Linux/C++多线程实例学习十字路口车辆调度
作者:chnmagnus
这篇文章主要为大家介绍了Linux/C++多线程实例学习十字路口车辆调度示例详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
实例要求:
有两条道路双向两个车道,即每条路每个方向只有一个车道,两条道路十字交叉。假设车辆只能向前直行,而不允许转弯和后退。如果有4辆车几乎同时到达这个十字路口,如图(a)所示;相互交叉地停下来,如图(b),此时4辆车都将不能继续向前,这是一个典型的死锁问题。从操作系统原理的资源分配观点,如果4辆车都想驶过十字路口,那么对资源的要求如下:
- 向北行驶的车1需要象限a和b;
- 向西行驶的车2需要象限b和c;
- 向南行驶的车3需要象限c和d;
- 向东行驶的车4需要象限d和a。
我们要实现十字路口交通的车辆同步问题,防止汽车在经过十字路口时产生死锁和饥饿。在我们的系统中,东西南北各个方向不断地有车辆经过十字路口(注意:不只有4辆),同一个方向的车辆依次排队通过十字路口。按照交通规则是右边车辆优先通行,如图(a)中,若只有car1、car2、car3,那么车辆通过十字路口的顺序是car3->car2->car1。
车辆通行总的规则
1)来自同一个方向多个车辆到达十字路口时,车辆靠右行驶,依次顺序通过;
2)有多个方向的车辆同时到达十字路口时,按照右边车辆优先通行规则,除非该车在十字路口等待时收到一个立即通行的信号;
3)避免产生死锁;
4)避免产生饥饿;
5)任何一个线程(车辆)不得采用单点调度策略;
6)由于使用AND型信号量机制会使线程(车辆)并发度降低且引起不公平(部分线程饥饿),本题不得使用AND型信号量机制,即在上图中车辆不能要求同时满足两个象限才能顺利通过,如南方车辆不能同时判断a和b是否有空。
解决方案
(可能存在一些不足,希望大家指出):
/** *方法:使用四种线程代表四个方向的车,通过互斥锁和信号量实现题目里的要求。 */ #include "../lib/myhead.h" #include <pthread.h> #include <queue> #define SLEEP_MS(ms) usleep((ms)*1000) using std::queue; enum Direction{ NORTH = 1, EAST = 2, SOUTH = 3, WEST = 4 }; /* generate mutex and cond that are required */ template<typename T> struct NormalMutex{ T val; //store some value that you can use bool flag; //control wether using cond pthread_mutex_t mutex; pthread_cond_t cond; NormalMutex():flag(false){ int err = pthread_mutex_init(&mutex,nullptr); if(err!=0) err_exit(err,"mutex init failed"); } /* if you need cond, please set flag true */ NormalMutex(bool flag):NormalMutex(){ this->flag = flag; if(flag){ int err = pthread_cond_init(&cond,nullptr); if(err!=0) err_exit(err,"cond init failed"); } } ~NormalMutex(){ pthread_mutex_destroy(&mutex); if(flag) pthread_cond_destroy(&cond); } }; /* define the struct containing mutex and cond */ NormalMutex< queue<int> > q_north(true), q_south(true), q_west(true), q_east(true); NormalMutex<bool> f_north(true), f_south(true), f_west(true), f_east(true); NormalMutex<int> r_a, r_b, r_c, r_d; /* define the integer to store the current car in four direction */ NormalMutex<long long> cur_n, cur_s, cur_e, cur_w; /* define bool to make sure wether a direction has car */ NormalMutex<bool> isin_n, isin_s, isin_e, isin_w; /* mark the remaining road*/ NormalMutex<int> resource; /* mark the end of deadlock*/ NormalMutex<bool> dl_over(true); /* signal four of few val to go firstly */ void init_car(){ if(q_north.val.size()>0){ //if there are val waiting in the queue, pop one and let it go cur_n.val = q_north.val.front(); //pop q_north.val.pop(); pthread_cond_broadcast(&q_north.cond); //let it go } if(q_south.val.size()>0){ cur_s.val = q_south.val.front(); q_south.val.pop(); pthread_cond_broadcast(&q_south.cond); } if(q_west.val.size()>0){ cur_w.val = q_west.val.front(); q_west.val.pop(); pthread_cond_broadcast(&q_west.cond); } if(q_east.val.size()>0){ cur_e.val = q_east.val.front(); q_east.val.pop(); pthread_cond_broadcast(&q_east.cond); } } int enterTheCrossing(Direction dir,const long long &car_no){ NormalMutex<int> *road; NormalMutex<bool> *isin; string direction; switch(dir){ case NORTH: road = &r_c; isin = &isin_n; direction = "North"; break; case EAST: road = &r_b; isin = &isin_e; direction = "East"; break; case SOUTH: road = &r_a; isin = &isin_s; direction = "South"; break; case WEST: road = &r_d; isin = &isin_w; direction = "West"; break; } /* enter the crossing */ pthread_mutex_lock(&(road->mutex)); printf("car %lld from %s arrives at crossing\n",car_no,direction.c_str()); /* things to do after lock the first road */ isin->val = true; //mark that there is car in north direction pthread_mutex_lock(&resource.mutex); int tem_re = --resource.val; //let the resource minus one pthread_mutex_unlock(&resource.mutex); return tem_re; } void detectDeadlock(Direction dir,int tem_re){ if(tem_re!=0) return ; string direction; NormalMutex<int> *road; NormalMutex<bool> *first, *isin; switch(dir){ case NORTH: direction = "East"; road = &r_c;isin = &isin_n; first = &f_east; break; case EAST: direction = "South"; road = &r_b;isin = &isin_e; first = &f_south; break; case SOUTH: direction = "West"; road = &r_a;isin = &isin_s; first = &f_west; break; case WEST: direction = "North"; road = &r_d;isin = &isin_w first = &f_north; break; } printf("DEADLOCK car jam detected. signal %s to go\n",direction.c_str()); dl_over.val = false; /* deal with the deadlock by making left car go */ pthread_mutex_unlock(&(road->mutex)); //release the road isin->val = false; //let left car go first pthread_cond_signal(&(first->cond));// send the signal to left car /* wait the end of deadlock */ pthread_mutex_lock(&dl_over.mutex); while(dl_over.val==false) pthread_cond_wait(&dl_over.cond,&dl_over.mutex); pthread_mutex_unlock(&dl_over.mutex); /* recover from deadlock */ pthread_mutex_lock(&(road->mutex)); isin->val = true; } void judgeRight(Direction dir){ NormalMutex<bool> *isin; NormalMutex<bool> *first; switch(dir){ case NORTH: isin = &isin_w; first = &f_north; break; case EAST: isin = &isin_n; first = &f_east; break; case SOUTH: isin = &isin_e; first = &f_south; break; case WEST: isin = &isin_s; first = &f_west; break; } /* juage that if car can go first */ pthread_mutex_lock(&(first->mutex)); while(isin->val) pthread_cond_wait(&(first->cond),&(first->mutex)); pthread_mutex_unlock(&(first->mutex)); } void gotoNextRoad(Direction dir,const long long & car_no){ string direction; NormalMutex<int> *r1,*r2; NormalMutex<bool> *isin,*lisin,*first; switch(dir){ case NORTH: r1 = &r_c; r2 = &r_d; isin = &isin_n;lisin = &isin_e; first = &f_east; direction = "North"; break; case EAST: r1 = &r_b; r2 = &r_c; isin = &isin_e;lisin = &isin_s; first = &f_south; direction = "East"; break; case SOUTH: r1 = &r_a; r2 = &r_b; isin = &isin_s;lisin = &isin_w; first = &f_west; direction = "South"; break; case WEST: r1 = &r_d; r2 = &r_a; isin = &isin_w;lisin = &isin_n; first = &f_north; direction = "West"; break; } /* go to next road */ pthread_mutex_lock(&(r2->mutex)); /* unlock the first road */ pthread_mutex_unlock(&(r1->mutex)); printf("car %lld from %s leaving crossing\n",car_no,direction.c_str()); /* things to do after unlocking the first road */ pthread_mutex_lock(&resource.mutex); resource.val++; //resource plus one pthread_mutex_unlock(&resource.mutex); /* out of the deadlock */ dl_over.val = true; pthread_cond_signal(&dl_over.cond); /* unlock the second road */ pthread_mutex_unlock(&(r2->mutex)); isin->val = false; //the road don't have car /* if left direction has waiting car,let it go first*/ pthread_mutex_lock(&(first->mutex)); first->val = true; //let left car go first, if exist pthread_mutex_unlock(&(first->mutex)); pthread_cond_signal(&first->cond); //send signal to left car } void doAfterGo(Direction dir){ NormalMutex<queue<int> > *qu; NormalMutex<long long> *cur; switch(dir){ case NORTH: qu = &q_north; cur = &cur_n; break; case EAST: qu = &q_east; cur = &cur_e; break; case SOUTH: qu = &q_south; cur = &cur_s; break; case WEST: qu = &q_west; cur = &cur_w; break; } /* let the next car in the same direction to go */ pthread_mutex_lock(&(qu->mutex)); pthread_mutex_lock(&(cur->mutex)); cur->val = qu->val.front(); //set next car to go qu->val.pop(); //leave the queue pthread_mutex_unlock(&(qu->mutex)); pthread_mutex_unlock(&(cur->mutex)); pthread_cond_broadcast(&(qu->cond)); } void * n_car(void *arg){ /* get the car_no from arg*/ long long car_no = reinterpret_cast<long long>(arg); /* block and wait the signal from init_car() or val over it */ pthread_mutex_lock(&q_north.mutex); while(cur_n.val != car_no){ pthread_cond_wait(&q_north.cond,&q_north.mutex); } pthread_mutex_unlock(&q_north.mutex); int tem_re = enterTheCrossing(NORTH,car_no); detectDeadlock(NORTH,tem_re); judgeRight(NORTH); gotoNextRoad(NORTH,car_no); doAfterGo(NORTH); return nullptr; } /* the thread representing the car coming from east */ void * e_car(void *arg){ /* get the car_no from arg*/ long long car_no = reinterpret_cast<long long>(arg); pthread_mutex_lock(&q_east.mutex); while(cur_e.val != car_no){ pthread_cond_wait(&q_east.cond,&q_east.mutex); } pthread_mutex_unlock(&q_east.mutex); int tem_re = enterTheCrossing(EAST,car_no); detectDeadlock(EAST,tem_re); judgeRight(EAST); gotoNextRoad(EAST,car_no); doAfterGo(EAST); return nullptr; } /* the thread representing the car from south */ void * s_car(void *arg){ /* get the car_no from arg*/ long long car_no = reinterpret_cast<long long>(arg); pthread_mutex_lock(&q_south.mutex); while(cur_s.val != car_no){ pthread_cond_wait(&q_south.cond,&q_south.mutex); } pthread_mutex_unlock(&q_south.mutex); int tem_re = enterTheCrossing(SOUTH,car_no); detectDeadlock(SOUTH,tem_re); judgeRight(SOUTH); gotoNextRoad(SOUTH,car_no); doAfterGo(SOUTH); return nullptr; } /* the thread representing the car from west */ void * w_car(void *arg){ /* get the car_no from arg*/ long long car_no = reinterpret_cast<long long>(arg); pthread_mutex_lock(&q_west.mutex); while(cur_w.val != car_no){ pthread_cond_wait(&q_west.cond,&q_west.mutex); } pthread_mutex_unlock(&q_west.mutex); int tem_re = enterTheCrossing(WEST,car_no); detectDeadlock(WEST,tem_re); judgeRight(WEST); gotoNextRoad(WEST,car_no); doAfterGo(WEST); return nullptr; } int main(int argc,char *argv[]){ /* check the argv */ if(argc!=2){ cout<<"Please input the car stream."<<endl; exit(0); } /* initialize the variable */ cur_n.val = cur_s.val = cur_e.val = cur_w.val = 0; isin_n.val = isin_s.val = isin_e.val = isin_w.val = false; resource.val = 4; int err = 0; int carNumber = strlen(argv[1]); pthread_t tids[carNumber+1]; /* create all cars and push them into queue */ for(int i=1;i<=carNumber;++i){ switch(argv[1][i-1]){ case 'n': q_north.val.push(i); err = pthread_create(&tids[i],nullptr,n_car,reinterpret_cast<void *>(i)); if(err!=0) err_exit(err,"can't create thread"); break; case 'w': q_west.val.push(i); err = pthread_create(&tids[i],nullptr,w_car,reinterpret_cast<void *>(i)); if(err!=0) err_exit(err,"can't create thread"); break; case 's': q_south.val.push(i); err = pthread_create(&tids[i],nullptr,s_car,reinterpret_cast<void *>(i)); if(err!=0) err_exit(err,"can't create thread"); break; case 'e': q_east.val.push(i); err = pthread_create(&tids[i],nullptr,e_car,reinterpret_cast<void *>(i)); if(err!=0) err_exit(err,"can't create thread"); break; } } /* wake up the car in front of queue */ init_car(); /* join threads */ for(int i=1;i<=carNumber;++i){ err = pthread_join(tids[i],nullptr); if(err!=0) err_exit(err,"can't join thread %d",i); } exit(0); }
代码中使用到的error handler函数:
static void err_doit(bool, int, const char *, va_list); void err_exit(int error, const char *fmt,...){ va_list ap; va_start(ap,fmt); err_doit(true,error,fmt,ap); va_end(ap); exit(1); } static void err_doit(bool errnoflag, int error, const char *fmt, va_list ap){ char buf[MAXLINE]; vsnprintf(buf,MAXLINE-1,fmt,ap); if(errnoflag) snprintf(buf+strlen(buf),MAXLINE-strlen(buf)-1,": %s",strerror(error)); cerr<<buf<<endl; }
以上就是Linux/C++多线程实例学习十字路口车辆调度的详细内容,更多关于Linux/C++ 多线程车辆调度的资料请关注脚本之家其它相关文章!