Golang

关注公众号 jb51net

关闭
首页 > 脚本专栏 > Golang > Go 线程安全

Go语言atomic.Value如何不加锁保证数据线程安全?

作者:心如花木向阳生

这篇文章主要介绍了Go语言atomic.Value如何不加锁保证数据线程安全详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪

引言

很多人可能没有注意过,在 Go(甚至是大部分语言)中,一条普通的赋值语句其实不是一个原子操作。例如,在32位机器上写int64类型的变量就会有中间状态,它会被拆成两次写操作(汇编的MOV指令)——写低 32 位和写高 32 位。32机器上对int64进行赋值

如果一个线程刚写完低32位,还没来得及写高32位时,另一个线程读取了这个变量,那它得到的就是一个毫无逻辑的中间变量,这很有可能使我们的程序出现Bug。

这还只是一个基础类型,如果我们对一个结构体进行赋值,那它出现并发问题的概率就更高了。很可能写线程刚写完一小半的字段,读线程就来读取这个变量,那么就只能读到仅修改了一部分的值。这显然破坏了变量的完整性,读出来的值也是完全错误的。

面对这种多线程下变量的读写问题,Go给出的解决方案是atomic.Value,它使得我们可以不依赖于不保证兼容性的unsafe.Pointer类型,同时又能将任意数据类型的读写操作封装成原子性操作。

atomic.Value的使用方式

atomic.Value类型对外提供了两个读写方法:

下面是一个简单的例子演示atomic.Value的用法。

type Rectangle struct {
	length int
	width  int
}
var rect atomic.Value
func update(width, length int) {
	rectLocal := new(Rectangle)
	rectLocal.width = width
	rectLocal.length = length
	rect.Store(rectLocal)
}
func main() {
	wg := sync.WaitGroup{}
	wg.Add(10)
	// 10 个协程并发更新
	for i := 0; i < 10; i++ {
		go func(i int) {
			defer wg.Done()
			update(i, i+5)
		}(i)
	}
	wg.Wait()
	r := rect.Load().(*Rectangle)
	fmt.Printf("rect.width=%d\nrect.length=%d\n", r.width, r.length)
}

你可能会好奇,为什么atomic.Value在不加锁的情况下就提供了读写变量的线程安全保证,接下来我们就一起看看其内部实现。

atomic.Value的内部实现

atomic.Value被设计用来存储任意类型的数据,所以它内部的字段是一个interface{}类型。

// A Value provides an atomic load and store of a consistently typed value.
// The zero value for a Value returns nil from Load.
// Once Store has been called, a Value must not be copied.
//
// A Value must not be copied after first use.
type Value struct {
	v interface{}
}

除了Value外,atomic包内部定义了一个ifaceWords类型,这其实是interface{}的内部表示 (runtime.eface),它的作用是将interface{}类型分解,得到其原始类型(typ)和真正的值(data)。

// ifaceWords is interface{} internal representation.
type ifaceWords struct {
	typ  unsafe.Pointer
	data unsafe.Pointer
}

写入线程安全的保证

直接来看代码

// Store sets the value of the Value to x.
// All calls to Store for a given Value must use values of the same concrete type.
// Store of an inconsistent type panics, as does Store(nil).
func (v *Value) Store(val interface{}) {
	if val == nil {
		panic("sync/atomic: store of nil value into Value")
	}
    // 通过unsafe.Pointer将现有的(v)和要写入的值(val) 分别转成ifaceWords类型。
    // 这样我们下一步就可以得到这两个interface{}的原始类型(typ)和真正的值(data)。
	vp := (*ifaceWords)(unsafe.Pointer(v))
	vlp := (*ifaceWords)(unsafe.Pointer(&val))
	for {
		typ := LoadPointer(&vp.typ)
		if typ == nil {
			// Attempt to start first store.
			// Disable preemption so that other goroutines can use
			// active spin wait to wait for completion; and so that
			// GC does not see the fake type accidentally.
			runtime_procPin()
			if !CompareAndSwapPointer(&vp.typ, nil, unsafe.Pointer(^uintptr(0))) {
				runtime_procUnpin()
				continue
			}
			// Complete first store.
			StorePointer(&vp.data, vlp.data)
			StorePointer(&vp.typ, vlp.typ)
			runtime_procUnpin()
			return
		}
		if uintptr(typ) == ^uintptr(0) {
			// First store in progress. Wait.
			// Since we disable preemption around the first store,
			// we can wait with active spinning.
			continue
		}
		// First store completed. Check type and overwrite data.
		if typ != vlp.typ {
			panic("sync/atomic: store of inconsistently typed value into Value")
		}
		StorePointer(&vp.data, vlp.data)
		return
	}
}

大概的逻辑:

这个逻辑的主要思想就是,为了完成多个字段的原子性写入,我们可以抓住其中的一个字段,以它的状态来标志整个原子写入的状态。

读取(Load)操作

先上代码:

// Load returns the value set by the most recent Store.
// It returns nil if there has been no call to Store for this Value.
func (v *Value) Load() (val interface{}) {
	vp := (*ifaceWords)(unsafe.Pointer(v))
	typ := LoadPointer(&vp.typ)
	if typ == nil || uintptr(typ) == ^uintptr(0) {
		// First store not yet completed.
		return nil
	}
	data := LoadPointer(&vp.data)
	vlp := (*ifaceWords)(unsafe.Pointer(&val))
	vlp.typ = typ
	vlp.data = data
	return
}

读取相对就简单很多了,它有两个分支:

总结

本文由浅入深的介绍了atomic.Value的使用姿势,以及内部实现。另外,原子操作由底层硬件支持,对于一个变量更新的保护,原子操作通常会更有效率,并且更能利用计算机多核的优势,如果要更新的是一个复合对象,则应当使用atomic.Value封装好的实现。

而我们做并发同步控制常用到的Mutex锁,则是由操作系统的调度器实现,锁应当用来保护一段逻辑。

以上就是Go语言atomic.Value如何不加锁保证数据线程安全?的详细内容,更多关于Go语言atomic.Value如何不加锁保证数据线程安全?的资料请关注脚本之家其它相关文章!

您可能感兴趣的文章:
阅读全文