python之链表的反转方式
作者:一叶知秋的BLOG
python链表的反转
反转链表
给你单链表的头节点 head ,请你反转链表,并返回反转后的链表。
- 输入:head = [1,2,3,4,5]
- 输出:[5,4,3,2,1]
- 输入:head = [1,2]
- 输出:[2,1]
示例 3:
- 输入:head = []
- 输出:[]
题解
# Definition for singly-linked list. # class ListNode: # def __init__(self, val=0, next=None): # self.val = val # self.next = next class Solution: """ 解题思路: 1.新建一个头指针 2.遍历head链表,依次在新的头节点位置插入,达到反转的效果 """ def reverseList(self, head: ListNode) -> ListNode: # 循环 new_head = None while head: per = head.next # pre 为后置节点,及当前节点的下一个节点 head.next = new_head # 插入头节点元素 new_head = head # 把串起来的链表赋值给头指针 head = per # 向后移一个单位 return new_head # 返回一个新的链表
python反转链表相关技巧
给定一个单链表的头结点pHead(该头节点是有值的,比如在下图,它的val是1),长度为n,反转该链表后,返回新链表的表头。
要求:空间复杂度 O(1)O(1) ,时间复杂度 O(n)O(n) 。
输入:
{1,2,3}
返回值:
{3,2,1}
先来看最基本的反转链表代码:
# -*- coding:utf-8 -*- # class ListNode: # def __init__(self, x): # self.val = x # self.next = None class Solution: # 返回ListNode def ReverseList(self, pHead): # write code here cur = pHead pre = None while cur: nextNode = cur.next cur.next = pre pre = cur cur = nextNode return pre
关键公式
抓住几个关键点:
- cur:原链表的头节点,在反转结束时,cur指向pre的下一个节点
- pre:原链表的尾节点,也就是反转后链表的头节点。最终返回的是pre。
- while cur:表示反转循环的条件,这里是判断cur是否为空。也可以根据题目的条件改成其他循环条件
- 反转链表的尾节点,这里的尾节点是None,后面会提到显式指定。
对于反转链表的问题,抓住原链表的头节点、原链表的尾节点、反转循环条件、反转链表的尾节点这几个主要角色,基本没什么问题。
接下来,举两个例子:
链表内指定区间反转
链表中的节点每k个一组翻转
链表内指定区间反转
将一个节点数为 size 链表 m 位置到 n 位置之间的区间反转,要求时间复杂度 O(n),空间复杂度 O(1)。
要求:时间复杂度 O(n) ,空间复杂度 O(n)
进阶:时间复杂度 O(n),空间复杂度 O(1)
输入:
{1,2,3,4,5},2,4
返回值:
{1,4,3,2,5}
套用公式
这道题目和baseline的区别是,是将对整个链表的反转改成链表 m 位置到 n 位置之间的区间反转,来套一下公式:
- 原链表的头节点:cur:从head出发,再走m-1步,到达cur
- 原链表的尾节点:pre:cur前面的节点
- 反转循环条件:for i in range(n,m)
- 反转链表的尾节点:需要保存下从head出发,再走m-1步,到达cur时,此时pre的位置 prePos。prePos.next是反转链表的尾节点
和前面的比,需要额外注意下:
- 需要保存下从head出发,再走m-1步,到达cur时,此时pre的位置 prePos。在反转循环结束后,再进行穿针引线
- 由于不是对整个链表进行反转,最好新建虚拟头节点dummpyNode,dummpyNode.next指向整个链表
代码实现
先看下套公式部分的代码:
# 找到pre和cur i = 1 while i<m: pre = cur cur = cur.next i = i+1 # 在指定区间内反转 preHead = pre while i<=n: nextNode = cur.next cur.next = pre pre = cur cur = nextNode i = i+1
穿针引线部分代码:
nextNode = preHead.next preHead.next = pre if nextNode: nextNode.next = cur
完整代码:
class ListNode: def __init__(self, x): self.val = x self.next = None class Solution: def reverseBetween(self , head , m , n ): # write code here dummpyNode = ListNode(-1) dummpyNode.next = head pre = dummpyNode cur = head i = 1 while i<m: pre = cur cur = cur.next i = i+1 preHead = pre while i<=n: nextNode = cur.next cur.next = pre pre = cur cur = nextNode i = i+1 nextNode = preHead.next preHead.next = pre if nextNode: nextNode.next = cur return dummpyNode.next
链表中的节点每k个一组翻转
将给出的链表中的节点每 k 个一组翻转,返回翻转后的链表
如果链表中的节点数不是 k 的倍数,将最后剩下的节点保持原样
你不能更改节点中的值,只能更改节点本身。
要求空间复杂度 O(1),时间复杂度 O(n)
输入:
{1,2,3,4,5},2
返回值:
{2,1,4,3,5}
套用公式
这道题目和baseline的区别是,是将对整个链表的反转改成每k个一组反转,如果节点数不是k的倍数,剩下的节点保持原样。
先分段来看,假设面对位置1-位置k的链表:
- 原链表的头节点:cur:从head出发,再走k-1步,到达cur
- 原链表的尾节点:pre:cur前面的节点
- 反转循环条件:for i in range(1,k)
- 反转链表的尾节点:先定义tail=head,等反转完后tail.next就是反转链表的尾节点
先看下套公式部分的代码:
pre = None cur = head tail = head i = 1 while i<=k: nextNode = cur.next cur.next = pre pre = cur cur = nextNode i = i+1
这样,我们就得到了1 位置1-位置k的反转链表。
此时:
- pre:指向反转链表的头节点
- cur:位置k+1的节点,下一段链表的头节点
- tail:反转链表的尾节点
那么,得到位置k+1-位置2k的反转链表,就可以用递归的思路,用tail.next=reverse(cur,k)
需要注意:如果链表中的节点数不是 k 的倍数,将最后剩下的节点保持原样
i = 1 tmp = cur while i<=k: if tmp: tmp = tmp.next else: return head i = i+1
代码实现
完整代码:
class ListNode: def __init__(self, x): self.val = x self.next = None class Solution: def reverseKGroup(self , head , k ): # write code here return self.reverse(head, k ) def reverse(self , head , k ): pre = None cur = head tail = head i = 1 tmp = cur while i<=k: if tmp: tmp = tmp.next else: return head i = i+1 i = 1 while i<=k: nextNode = cur.next cur.next = pre pre = cur cur = nextNode i = i+1 tail.next = self.reverse(cur, k) return pre
好了,抓住几个关键点:
- cur:原链表的头节点,在反转结束时,cur指向pre的下一个节点
- pre:原链表的尾节点,也就是反转后链表的头节点。最终返回的是pre。
- while cur:表示反转循环的条件,这里是判断cur是否为空。也可以根据题目的条件改成其他循环条件
- 反转链表的尾节点,这里的尾节点是None,后面会提到显式指定。
想清楚这几个关键点都是如何定义的,基本题目都可以迎刃而解啦。
总结
以上为个人经验,希望能给大家一个参考,也希望大家多多支持脚本之家。