基于Python实现视频去重小工具
作者:像风一样的男人@
这篇文章主要为大家详细介绍了如何通过Python语言编写简单的视频去重小工具,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起尝试一下
同级目录下新建dup_video
import json import os import shutil import cv2 import imagehash from PIL import Image from loguru import logger from PySimpleGUI import popup_get_folder class VideoDuplicate(object): ''' 返回整个视频的图片指纹列表 从1秒开始,每3秒抽帧,计算一张图像指纹 ''' def __init__(self): self._over_length_video: list = [] self._no_video: list = [] def _video_hash(self, video_path) -> list: ''' @param video_path -> 视频绝对路径; ''' hash_arr = [] cap = cv2.VideoCapture(video_path) ##打开视频文件 logger.info(f'开始抽帧【{video_path}】') n_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) # 视频的帧数 logger.warning(f'视频帧数:{n_frames}') fps = cap.get(cv2.CAP_PROP_FPS) # 视频的帧率 logger.warning(f'视频帧率:{fps}') dur = n_frames / fps * 1000 # 视频大致总长度 cap_set = 1000 logger.warning(f'视频大约总长:{dur / 1000}') if dur // 1000 > 11: logger.error(f'视频时长超出规定范围【6~10】;当前时长:【{dur // 1000}】;跳过该视频;') self._over_length_video.append(video_path) return [] while cap_set < dur: # 从3秒开始,每60秒抽帧,计算图像指纹。总长度-3s,是因为有的时候计算出来的长度不准。 cap.set(cv2.CAP_PROP_POS_MSEC, cap_set) logger.debug(f'开始提取:【{cap_set // 1000}】/s的图片;') # 返回该时间点的,图像(numpy数组),及读取是否成功 success, image_np = cap.read() if success: img = Image.fromarray(cv2.cvtColor(image_np, cv2.COLOR_BGR2RGB)) # 转成cv图像格式 h = str(imagehash.dhash(img)) logger.success(f'【{cap_set}/s图像指纹:【{h}】') hash_arr.append(h) # 图像指纹 else: logger.error(str(cap_set / 1000)) cap_set += 1000 * 2 cap.release() # 释放视频 return hash_arr def start(self, base_dir): ''' @param base_dir -> 主文件路径; ''' data: list = [] for video in os.listdir(base_dir): logger.debug(f'-' * 80) name, ext = os.path.splitext(video) if ext not in ('.mp4', '.MP4'): logger.error(f'视频文件格式不符;【{video}】;执行跳过;') continue abs_video_path = os.path.join(base_dir, video) video_hash_list = self._video_hash(abs_video_path) if video_hash_list: data.append({'video_abs_path': abs_video_path, 'hash': video_hash_list}) self._write_log(data) return data @staticmethod def _write_log(data: list) -> None: '''视频哈希后的值写入日志文件''' with open(f'log.txt', 'w+', encoding='utf-8') as f: f.write(json.dumps(data)) def __call__(self, base_dir, *args, **kwargs): self.start(base_dir) logger.debug(f'-----------------------------------开始比对关键帧差值感知余弦算法-----------------------------') with open('log.txt') as f: data = json.loads(f.read()) for i in range(0, len(data) - 1): for j in range(i + 1, len(data)): if data[i]['hash'] == data[j]['hash']: _, filename = os.path.split(data[i]['video_abs_path']) logger.error(f'移动文件:【{filename}】') shutil.move( os.path.join(base_dir, filename), os.path.join(os.path.join(os.getcwd(), 'dup_video'), filename) ) logger.warning('---------------------超长视频----------------------') for i in self._over_length_video: _, name = os.path.split(i) logger.error(name) def main(): path = popup_get_folder('请选择[视频去重]文件夹') v = VideoDuplicate() v(path) if __name__ == '__main__': main()
方法补充
除了上述代码,小编还整理了其他可以实现视频去除功能的方法,希望对大家有所帮助
python+opencv抽取视频帧并去重
import os import sys import cv2 import glob import json import numpy as np import skimage from skimage import metrics import hashlib print(skimage.__version__) def load_json(json_file): with open(json_file) as fp: data = json.load(fp) return data['outputs'] def ssim_dis(im1, im2): ssim = metrics.structural_similarity(im1, im2, data_range=255, multichannel=True) return ssim # cv2 def isdarkOrBright(grayImg, thre_dark=10, thre_bright=230): mean = np.mean(grayImg) if mean < thre_dark or mean > thre_bright: return True else: return False def get_file_md5(file_name): """ caculate md5 : param file_name : return md5 """ m = hashlib.md5() with open(file_name, 'rb') as fobj: while True: data = fobj.read(4096) if not data: break m.update(data) return m.hexdigest() def extract_frame(video_path, save_dir, prefix, ssim_thre=0.90): count = 0 md5set = {} last_frame = None cap = cv2.VideoCapture(video_path) fps = cap.get(cv2.CAP_PROP_FPS) index = 0 tmp_frames = [] while cap.isOpened(): frameState, frame = cap.read() if not frameState or frame is None: break grayImg = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) # if isdarkOrBright(grayImg): # index += 1 # continue assert cv2.imwrite('tmp.jpg', frame, [cv2.IMWRITE_JPEG_QUALITY, 100]) md5 = get_file_md5('tmp.jpg') if md5 in md5set: md5set[md5] += 1 index += 1 continue md5set[md5] = 1 save_path = os.path.join(save_dir, prefix+'_'+str(index).rjust(4, '0')+'.jpg') if last_frame is None: if cv2.imwrite(save_path, frame, [cv2.IMWRITE_JPEG_QUALITY, 100]): count += 1 last_frame = frame tmp_frames.append(frame) else: dis = ssim_dis(last_frame, frame) if dis <= ssim_thre: save_frame = tmp_frames[len(tmp_frames)//2] if cv2.imwrite(save_path, save_frame, [cv2.IMWRITE_JPEG_QUALITY, 100]): count += 1 last_frame = frame tmp_frames = [frame] else: tmp_frames.append(frame) index += 1 cap.release() return count if __name__ == '__main__': import sys video_path = "videos/***.mp4" video_name = video_path.split("/")[-1] prefix = video_name[:-4] save_imgs_dir = prefix if not os.path.exists(save_imgs_dir): os.mkdir(save_imgs_dir) N = extract_frame(video_path, save_imgs_dir, prefix) print(video_name, N)
对图片,视频,文件进行去重
import os from tkinter import * from tkinter import messagebox import tkinter.filedialog root=Tk() root.title("筛选重复的视频和照片") root.geometry("500x500+500+200") def wbb(): a=[] c={} filename=tkinter.filedialog.askopenfilenames() for i in filename: with open(i,'rb') as f: a.append(f.read()) for j in range(len(a)): c[a[j]]=filename[j] filename1=tkinter.filedialog.askdirectory() if filename1!="": p=1 lb1.config(text=filename1+"下的文件为:") for h in c: k=c[h].split(".")[-1] with open(filename1+"/"+str(p)+"."+k,'wb') as f: f.write(h) p=p+1 for g in os.listdir(filename1): txt.insert(END,g+'\n') else: messagebox.showinfo("提示",message ='请选择路径') frame1=Frame(root,relief=RAISED) frame1.place(relx=0.0) frame2=Frame(root,relief=GROOVE) frame2.place(relx=0.5) lb1=Label(frame1,text="等等下面会有变化?",font=('华文新魏',13)) lb1.pack(fill=X) txt=Text(frame1,width=30,height=50,font=('华文新魏',10)) txt.pack(fill=X) lb=Label(frame2,text="点我选择要进行筛选的文件:",font=('华文新魏',10)) lb.pack(fill=X) btn=Button(frame2,text="请选择要进行筛选的文件",fg='black',relief="raised",bd="9",command=wbb) btn.pack(fill=X) root.mainloop()
效果图
到此这篇关于基于Python实现视频去重小工具的文章就介绍到这了,更多相关Python视频去重内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!