python

关注公众号 jb51net

关闭
首页 > 脚本专栏 > python > PyTorch神经网络 Mnist 分类

PyTorch中的神经网络 Mnist 分类任务

作者:虚心求知的熊

这篇文章主要介绍了PyTorch中的神经网络 Mnist 分类任务,在本次的分类任务当中,我们使用的数据集是 Mnist 数据集,这个数据集大家都比较熟悉,需要的朋友可以参考下

本文参加新星计划人工智能(Pytorch)赛道:https://bbs.csdn.net/topics/613989052

在这里插入图片描述

一、Mnist 分类任务简介

文件名称大小内容
train-images-idx3-ubyte.gz9,681 kb55000 张训练集,5000 张验证集
train-labels-idx1-ubyte.gz29 kb训练集图片对应的标签
t10k-images-idx3-ubyte.gz1,611kb10000 张测试集
t10k-labels-idx1-ubyte.gz5 kb测试集图片对应的标签

二、Mnist 数据集的读取

%matplotlib inline
from pathlib import Path
import requests
​
DATA_PATH = Path("data")
PATH = DATA_PATH / "mnist"
​
PATH.mkdir(parents=True, exist_ok=True)
​
URL = "http://deeplearning.net/data/mnist/"
FILENAME = "mnist.pkl.gz"

对于我们上面定义的下载路径等等,会进行自动判断,如果该路径下没有 Minst 数据集的话,就会自动进行下载。

if not (PATH / FILENAME).exists():
        content = requests.get(URL + FILENAME).content
        (PATH / FILENAME).open("wb").write(content)

由于下载出来的数据集是压缩包的状态,因此,我们还需要对其进行解压,具体的代码详见下面。

import pickle
import gzip
​
with gzip.open((PATH / FILENAME).as_posix(), "rb") as f:
        ((x_train, y_train), (x_valid, y_valid), _) = pickle.load(f, encoding="latin-1")

在上述工作准备完成后,我们可以先查看一个数据,观察他的特征。

from matplotlib import pyplot
import numpy as np
​
pyplot.imshow(x_train[0].reshape((28, 28)), cmap="gray")
print(x_train.shape)
#(50000, 784)

在此处,我们查看的训练集当中的第一个数据,大小重构为 (28,28,1),表示长是 28,宽是 28,颜色通道是 1(黑白图就只有一个颜色通道),颜色设置为灰色。在查看第一个数据的同时,我们也输出整个训练集的数据大小,其中,(50000, 784) 中的 50000 表示训练集一共有 50000 个数据样本,784 表示训练集中每个样本有 784 个像素点(可以理解成 784 个特征)。

在这里插入图片描述

三、 Mnist 分类任务实现

1. 标签和简单网络架构 在分类任务当中,标签的设计是有所不同的。

在这里插入图片描述

在这里插入图片描述

2. 具体代码实现

import torch
​
x_train, y_train, x_valid, y_valid = map(
    torch.tensor, (x_train, y_train, x_valid, y_valid)
)
n, c = x_train.shape
x_train, x_train.shape, y_train.min(), y_train.max()
print(x_train, y_train)
print(x_train.shape)
print(y_train.min(), y_train.max())
#tensor([[0., 0., 0.,  ..., 0., 0., 0.],
#        [0., 0., 0.,  ..., 0., 0., 0.],
#        [0., 0., 0.,  ..., 0., 0., 0.],
#        ...,
#        [0., 0., 0.,  ..., 0., 0., 0.],
#        [0., 0., 0.,  ..., 0., 0., 0.],
#        [0., 0., 0.,  ..., 0., 0., 0.]]) tensor([5, 0, 4,  ..., 8, 4, 8])
#torch.Size([50000, 784])
#tensor(0) tensor(9)
import torch.nn.functional as F
​
loss_func = F.cross_entropy
​
def model(xb):
    return xb.mm(weights) + bias

然后进行参数的设定。

bs = 64
xb = x_train[0:bs]  # a mini-batch from x
yb = y_train[0:bs]
weights = torch.randn([784, 10], dtype = torch.float,  requires_grad = True) 
bs = 64
bias = torch.zeros(10, requires_grad=True)
​
print(loss_func(model(xb), yb))
#tensor(10.7988, grad_fn=<NllLossBackward>)
from torch import nn
​
class Mnist_NN(nn.Module):
    def __init__(self):
        super().__init__()
        self.hidden1 = nn.Linear(784, 128) #隐藏层1:784*128
        self.hidden2 = nn.Linear(128, 256) #隐藏层2:128*256
        self.out  = nn.Linear(256, 10) #输出层,256*10
​
    def forward(self, x):
        x = F.relu(self.hidden1(x))
        x = F.relu(self.hidden2(x))
        x = self.out(x)
        return x
        
net = Mnist_NN()
print(net)
​#Mnist_NN(
#  (hidden1): Linear(in_features=784, out_features=128, bias=True)
#  (hidden2): Linear(in_features=128, out_features=256, bias=True)
#  (out): Linear(in_features=256, out_features=10, bias=True)
#)

我们可以打印定义好名字里的权重和偏置项,首先打印名字,然后打印参数,最后打印参数的维度。

for name, parameter in net.named_parameters():
    print(name, parameter,parameter.size())
#hidden1.weight Parameter containing:
#tensor([[ 0.0018,  0.0218,  0.0036,  ..., -0.0286, -0.0166,  0.0089],
#        [-0.0349,  0.0268,  0.0328,  ...,  0.0263,  0.0200, -0.0137],
#        [ 0.0061,  0.0060, -0.0351,  ...,  0.0130, -0.0085,  0.0073],
#        ...,
#        [-0.0231,  0.0195, -0.0205,  ..., -0.0207, -0.0103, -0.0223],
#        [-0.0299,  0.0305,  0.0098,  ...,  0.0184, -0.0247, -0.0207],
#        [-0.0306, -0.0252, -0.0341,  ...,  0.0136, -0.0285,  0.0057]],
#       requires_grad=True) torch.Size([128, 784])
#hidden1.bias Parameter containing:
#tensor([ 0.0072, -0.0269, -0.0320, -0.0162,  0.0102,  0.0189, -0.0118, -0.0063,
#        -0.0277,  0.0349,  0.0267, -0.0035,  0.0127, -0.0152, -0.0070,  0.0228,
#        -0.0029,  0.0049,  0.0072,  0.0002, -0.0356,  0.0097, -0.0003, -0.0223,
#        -0.0028, -0.0120, -0.0060, -0.0063,  0.0237,  0.0142,  0.0044, -0.0005,
#         0.0349, -0.0132,  0.0138, -0.0295, -0.0299,  0.0074,  0.0231,  0.0292,
#        -0.0178,  0.0046,  0.0043, -0.0195,  0.0175, -0.0069,  0.0228,  0.0169,
#         0.0339,  0.0245, -0.0326, -0.0260, -0.0029,  0.0028,  0.0322, -0.0209,
#        -0.0287,  0.0195,  0.0188,  0.0261,  0.0148, -0.0195, -0.0094, -0.0294,
#        -0.0209, -0.0142,  0.0131,  0.0273,  0.0017,  0.0219,  0.0187,  0.0161,
#         0.0203,  0.0332,  0.0225,  0.0154,  0.0169, -0.0346, -0.0114,  0.0277,
#         0.0292, -0.0164,  0.0001, -0.0299, -0.0076, -0.0128, -0.0076, -0.0080,
#        -0.0209, -0.0194, -0.0143,  0.0292, -0.0316, -0.0188, -0.0052,  0.0013,
#        -0.0247,  0.0352, -0.0253, -0.0306,  0.0035, -0.0253,  0.0167, -0.0260,
#        -0.0179, -0.0342,  0.0033, -0.0287, -0.0272,  0.0238,  0.0323,  0.0108,
#         0.0097,  0.0219,  0.0111,  0.0208, -0.0279,  0.0324, -0.0325, -0.0166,
#        -0.0010, -0.0007,  0.0298,  0.0329,  0.0012, -0.0073, -0.0010,  0.0057],
#       requires_grad=True) torch.Size([128])
#hidden2.weight Parameter containing:
#tensor([[-0.0383, -0.0649,  0.0665,  ..., -0.0312,  0.0394, -0.0801],
#        [-0.0189, -0.0342,  0.0431,  ..., -0.0321,  0.0072,  0.0367],
#        [ 0.0289,  0.0780,  0.0496,  ...,  0.0018, -0.0604, -0.0156],
#        ...,
#        [-0.0360,  0.0394, -0.0615,  ...,  0.0233, -0.0536, -0.0266],
#        [ 0.0416,  0.0082, -0.0345,  ...,  0.0808, -0.0308, -0.0403],
#        [-0.0477,  0.0136, -0.0408,  ...,  0.0180, -0.0316, -0.0782]],
#       requires_grad=True) torch.Size([256, 128])
#hidden2.bias Parameter containing:
#tensor([-0.0694, -0.0363, -0.0178,  0.0206, -0.0875, -0.0876, -0.0369, -0.0386,
#         0.0642, -0.0738, -0.0017, -0.0243, -0.0054,  0.0757, -0.0254,  0.0050,
#         0.0519, -0.0695,  0.0318, -0.0042, -0.0189, -0.0263, -0.0627, -0.0691,
#         0.0713, -0.0696, -0.0672,  0.0297,  0.0102,  0.0040,  0.0830,  0.0214,
#         0.0714,  0.0327, -0.0582, -0.0354,  0.0621,  0.0475,  0.0490,  0.0331,
#        -0.0111, -0.0469, -0.0695, -0.0062, -0.0432, -0.0132, -0.0856, -0.0219,
#        -0.0185, -0.0517,  0.0017, -0.0788, -0.0403,  0.0039,  0.0544, -0.0496,
#         0.0588, -0.0068,  0.0496,  0.0588, -0.0100,  0.0731,  0.0071, -0.0155,
#        -0.0872, -0.0504,  0.0499,  0.0628, -0.0057,  0.0530, -0.0518, -0.0049,
#         0.0767,  0.0743,  0.0748, -0.0438,  0.0235, -0.0809,  0.0140, -0.0374,
#         0.0615, -0.0177,  0.0061, -0.0013, -0.0138, -0.0750, -0.0550,  0.0732,
#         0.0050,  0.0778,  0.0415,  0.0487,  0.0522,  0.0867, -0.0255, -0.0264,
#         0.0829,  0.0599,  0.0194,  0.0831, -0.0562,  0.0487, -0.0411,  0.0237,
#         0.0347, -0.0194, -0.0560, -0.0562, -0.0076,  0.0459, -0.0477,  0.0345,
#        -0.0575, -0.0005,  0.0174,  0.0855, -0.0257, -0.0279, -0.0348, -0.0114,
#        -0.0823, -0.0075, -0.0524,  0.0331,  0.0387, -0.0575,  0.0068, -0.0590,
#        -0.0101, -0.0880, -0.0375,  0.0033, -0.0172, -0.0641, -0.0797,  0.0407,
#         0.0741, -0.0041, -0.0608,  0.0672, -0.0464, -0.0716, -0.0191, -0.0645,
#         0.0397,  0.0013,  0.0063,  0.0370,  0.0475, -0.0535,  0.0721, -0.0431,
#         0.0053, -0.0568, -0.0228, -0.0260, -0.0784, -0.0148,  0.0229, -0.0095,
#        -0.0040,  0.0025,  0.0781,  0.0140, -0.0561,  0.0384, -0.0011, -0.0366,
#         0.0345,  0.0015,  0.0294, -0.0734, -0.0852, -0.0015, -0.0747, -0.0100,
#         0.0801, -0.0739,  0.0611,  0.0536,  0.0298, -0.0097,  0.0017, -0.0398,
#         0.0076, -0.0759, -0.0293,  0.0344, -0.0463, -0.0270,  0.0447,  0.0814,
#        -0.0193, -0.0559,  0.0160,  0.0216, -0.0346,  0.0316,  0.0881, -0.0652,
#        -0.0169,  0.0117, -0.0107, -0.0754, -0.0231, -0.0291,  0.0210,  0.0427,
#         0.0418,  0.0040,  0.0762,  0.0645, -0.0368, -0.0229, -0.0569, -0.0881,
#        -0.0660,  0.0297,  0.0433, -0.0777,  0.0212, -0.0601,  0.0795, -0.0511,
#        -0.0634,  0.0720,  0.0016,  0.0693, -0.0547, -0.0652, -0.0480,  0.0759,
#         0.0194, -0.0328, -0.0211, -0.0025, -0.0055, -0.0157,  0.0817,  0.0030,
#         0.0310, -0.0735,  0.0160, -0.0368,  0.0528, -0.0675, -0.0083, -0.0427,
#        -0.0872,  0.0699,  0.0795, -0.0738, -0.0639,  0.0350,  0.0114,  0.0303],
#       requires_grad=True) torch.Size([256])
#out.weight Parameter containing:
#tensor([[ 0.0232, -0.0571,  0.0439,  ..., -0.0417, -0.0237,  0.0183],
#        [ 0.0210,  0.0607,  0.0277,  ..., -0.0015,  0.0571,  0.0502],
#        [ 0.0297, -0.0393,  0.0616,  ...,  0.0131, -0.0163, -0.0239],
#        ...,
#        [ 0.0416,  0.0309, -0.0441,  ..., -0.0493,  0.0284, -0.0230],
#        [ 0.0404, -0.0564,  0.0442,  ..., -0.0271, -0.0526, -0.0554],
#        [-0.0404, -0.0049, -0.0256,  ..., -0.0262, -0.0130,  0.0057]],
#       requires_grad=True) torch.Size([10, 256])
#out.bias Parameter containing:
#tensor([-0.0536,  0.0007,  0.0227, -0.0072, -0.0168, -0.0125, -0.0207, -0.0558,
#         0.0579, -0.0439], requires_grad=True) torch.Size([10])

四、使用 TensorDataset 和 DataLoader 简化

自己构建数据集,使用 batch 取数据会略显麻烦,因此,我们可以使用 TensorDataset 和 DataLoader 这两个模块进行简化。

from torch.utils.data import TensorDataset
from torch.utils.data import DataLoader
​
train_ds = TensorDataset(x_train, y_train)
train_dl = DataLoader(train_ds, batch_size=bs, shuffle=True)
​
valid_ds = TensorDataset(x_valid, y_valid)
valid_dl = DataLoader(valid_ds, batch_size=bs * 2)
def get_data(train_ds, valid_ds, bs):
    return (
        DataLoader(train_ds, batch_size=bs, shuffle=True),
        DataLoader(valid_ds, batch_size=bs * 2),
    )
import numpy as np
​
def fit(steps, model, loss_func, opt, train_dl, valid_dl):
    for step in range(steps):
        model.train()
        for xb, yb in train_dl:
            loss_batch(model, loss_func, xb, yb, opt)
​
        model.eval()
        with torch.no_grad():
            losses, nums = zip(
                *[loss_batch(model, loss_func, xb, yb) for xb, yb in valid_dl]
            )
        val_loss = np.sum(np.multiply(losses, nums)) / np.sum(nums)
        print('当前step:'+str(step), '验证集损失:'+str(val_loss))
from torch import optim
def get_model():
    model = Mnist_NN()
    return model, optim.SGD(model.parameters(), lr=0.001)
def loss_batch(model, loss_func, xb, yb, opt=None):
    loss = loss_func(model(xb), yb)
​
    if opt is not None:
        loss.backward()
        opt.step()
        opt.zero_grad()
​
    return loss.item(), len(xb)

我们也可以像上篇博文一样,使用三行代码进行解决。

train_dl, valid_dl = get_data(train_ds, valid_ds, bs)
model, opt = get_model()
fit(25, model, loss_func, opt, train_dl, valid_dl)
#当前step:0 验证集损失:2.2796445930480957
#当前step:1 验证集损失:2.2440698066711424
#当前step:2 验证集损失:2.1889826164245605
#当前step:3 验证集损失:2.0985311767578123
#当前step:4 验证集损失:1.9517273582458496
#当前step:5 验证集损失:1.7341805934906005
#当前step:6 验证集损失:1.4719875366210937
#当前step:7 验证集损失:1.2273896869659424
#当前step:8 验证集损失:1.0362271406173706
#当前step:9 验证集损失:0.8963696184158325
#当前step:10 验证集损失:0.7927186088562012
#当前step:11 验证集损失:0.7141492074012756
#当前step:12 验证集损失:0.6529350900650024
#当前step:13 验证集损失:0.60417300491333
#当前step:14 验证集损失:0.5643046331882476
#当前step:15 验证集损失:0.5317994566917419
##当前step:16 验证集损失:0.5047958114624024
#当前step:17 验证集损失:0.4813900615692139
#当前step:18 验证集损失:0.4618900228500366
#当前step:19 验证集损失:0.4443243554592133
#当前step:20 验证集损失:0.4297310716629028
#当前step:21 验证集损失:0.416976597738266
#当前step:22 验证集损失:0.406348459148407
#当前step:23 验证集损失:0.3963301926612854
#当前step:24 验证集损失:0.38733808159828187​

到此这篇关于PyTorch中的神经网络 Mnist 分类任务的文章就介绍到这了,更多相关PyTorch神经网络 Mnist 分类任务内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

您可能感兴趣的文章:
阅读全文