java

关注公众号 jb51net

关闭
首页 > 软件编程 > java > SparkStreaming整合Kafka

SparkStreaming整合Kafka过程详解

作者:健鑫.

这篇文章主要介绍了SparkStreaming整合Kafka过程,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习吧

Spark Streaming连接kafka 的两种方式

Receiver based Approah

Direct Approach

// 从kafka加载数据
val kafkaParams = Map[String, Object](
  "bootstrap.servers" -> "hadoop102:9092",//kafka集群地址
  "key.deserializer" -> classOf[StringDeserializer],//key的反序列化规则
  "value.deserializer" -> classOf[StringDeserializer],//value的反序列化规则
  "group.id" -> "sparkdemo",//消费者组名称
  //earliest:表示如果有offset记录从offset记录开始消费,如果没有从最早的消息开始消费
  //latest:表示如果有offset记录从offset记录开始消费,如果没有从最后/最新的消息开始消费
  //none:表示如果有offset记录从offset记录开始消费,如果没有就报错
  "auto.offset.reset" -> "latest",
  "auto.commit.interval.ms"->"1000",//自动提交的时间间隔
  "enable.auto.commit" -> (true: java.lang.Boolean)//是否自动提交
)
val topics = Array("spark_kafka")//要订阅的主题
//使用工具类从Kafka中消费消息
val kafkaDS: InputDStream[ConsumerRecord[String, String]] = KafkaUtils.createDirectStream[String, String](
  ssc,
  LocationStrategies.PreferConsistent, //位置策略,使用源码中推荐的
  ConsumerStrategies.Subscribe[String, String](topics, kafkaParams) //消费策略,使用源码中推荐的
)

代码展示

自动提交偏移量

object kafka_Demo01 {
  def main(args: Array[String]): Unit = {
    val conf = new SparkConf().setMaster("local[*]").setAppName("kafka_Demo01")
    val sc = new SparkContext(conf)
    val ssc = new StreamingContext(sc, Seconds(5))
    ssc.checkpoint("data/ckp")
    // 从kafka加载数据
    val kafkaParams = Map[String, Object](
      "bootstrap.servers" -> "hadoop102:9092",//kafka集群地址
      "key.deserializer" -> classOf[StringDeserializer],//key的反序列化规则
      "value.deserializer" -> classOf[StringDeserializer],//value的反序列化规则
      "group.id" -> "sparkdemo",//消费者组名称
      //earliest:表示如果有offset记录从offset记录开始消费,如果没有从最早的消息开始消费
      //latest:表示如果有offset记录从offset记录开始消费,如果没有从最后/最新的消息开始消费
      //none:表示如果有offset记录从offset记录开始消费,如果没有就报错
      "auto.offset.reset" -> "latest",
      "auto.commit.interval.ms"->"1000",//自动提交的时间间隔
      "enable.auto.commit" -> (true: java.lang.Boolean)//是否自动提交
    )
    val topics = Array("spark_kafka")//要订阅的主题
    //使用工具类从Kafka中消费消息
    val kafkaDS: InputDStream[ConsumerRecord[String, String]] = KafkaUtils.createDirectStream[String, String](
      ssc,
      LocationStrategies.PreferConsistent, //位置策略,使用源码中推荐的
      ConsumerStrategies.Subscribe[String, String](topics, kafkaParams) //消费策略,使用源码中推荐的
    )
    // 处理消息
    val infoDS = kafkaDS.map(record => {
      val topic = record.topic()
      val partition = record.partition()
      val offset = record.offset()
      val key = record.key()
      val value = record.value()
      val info: String = s"""topic:${topic}, partition:${partition}, offset:${offset}, key:${key}, value:${value}"""
      info
    })
    // 输出
    infoDS.print()
    ssc.start()
    ssc.awaitTermination()
    ssc.stop(true, true)
  }
}

手动提交

提交代码

// 处理消息
//注意提交的时机:应该是消费完一小批就该提交一次offset,而在DStream一小批的体现是RDD
kafkaDS.foreachRDD(rdd => {
  rdd.foreach(record => {
    val topic = record.topic()
    val partition = record.partition()
    val offset = record.offset()
    val key = record.key()
    val value = record.value()
    val info: String = s"""topic:${topic}, partition:${partition}, offset:${offset}, key:${key}, value:${value}"""
    info
    println("消费" + info)
  })
  //获取rdd中offset相关的信息:offsetRanges里面就包含了该批次各个分区的offset信息
  val offsetRanges: Array[OffsetRange] = rdd.asInstanceOf[HasOffsetRanges].offsetRanges
  //提交
  kafkaDS.asInstanceOf[CanCommitOffsets].commitAsync(offsetRanges)
  println("当前批次的数据已消费并手动提交")
})

完整代码

object kafka_Demo02 {
  def main(args: Array[String]): Unit = {
    val conf = new SparkConf().setMaster("local[*]").setAppName("kafka_Demo01")
    val sc = new SparkContext(conf)
    val ssc = new StreamingContext(sc, Seconds(5))
    ssc.checkpoint("data/ckp")
    // 从kafka加载数据
    val kafkaParams = Map[String, Object](
      "bootstrap.servers" -> "hadoop102:9092",//kafka集群地址
      "key.deserializer" -> classOf[StringDeserializer],//key的反序列化规则
      "value.deserializer" -> classOf[StringDeserializer],//value的反序列化规则
      "group.id" -> "sparkdemo",//消费者组名称
      //earliest:表示如果有offset记录从offset记录开始消费,如果没有从最早的消息开始消费
      //latest:表示如果有offset记录从offset记录开始消费,如果没有从最后/最新的消息开始消费
      //none:表示如果有offset记录从offset记录开始消费,如果没有就报错
      "auto.offset.reset" -> "latest",
//      "auto.commit.interval.ms"->"1000",//自动提交的时间间隔
      "enable.auto.commit" -> (false: java.lang.Boolean)//是否自动提交
    )
    val topics = Array("spark_kafka")//要订阅的主题
    //使用工具类从Kafka中消费消息
    val kafkaDS: InputDStream[ConsumerRecord[String, String]] = KafkaUtils.createDirectStream[String, String](
      ssc,
      LocationStrategies.PreferConsistent, //位置策略,使用源码中推荐的
      ConsumerStrategies.Subscribe[String, String](topics, kafkaParams) //消费策略,使用源码中推荐的
    )
    // 处理消息
    //注意提交的时机:应该是消费完一小批就该提交一次offset,而在DStream一小批的体现是RDD
    kafkaDS.foreachRDD(rdd => {
      rdd.foreach(record => {
        val topic = record.topic()
        val partition = record.partition()
        val offset = record.offset()
        val key = record.key()
        val value = record.value()
        val info: String = s"""topic:${topic}, partition:${partition}, offset:${offset}, key:${key}, value:${value}"""
        info
        println("消费" + info)
      })
      //获取rdd中offset相关的信息:offsetRanges里面就包含了该批次各个分区的offset信息
      val offsetRanges: Array[OffsetRange] = rdd.asInstanceOf[HasOffsetRanges].offsetRanges
      //提交
      kafkaDS.asInstanceOf[CanCommitOffsets].commitAsync(offsetRanges)
      println("当前批次的数据已消费并手动提交")
    })
    // 输出
    kafkaDS.print()
    ssc.start()
    ssc.awaitTermination()
    ssc.stop(true, true)
  }
}

到此这篇关于SparkStreaming整合Kafka过程详解的文章就介绍到这了,更多相关SparkStreaming整合Kafka内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

您可能感兴趣的文章:
阅读全文