go语言算法题解二叉树的拷贝、镜像和对称
作者:Hann Yang
这篇文章主要为大家详细介绍了go语言算法题解二叉树的拷贝、镜像和对称,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下

拷贝副本
复制一个二叉树副本,广度优先遍历同时设置两个队列,一个遍历一个复制创建。
func Copy(bt *biTree) *biTree {
root := bt.Root
if root == nil {
return &biTree{}
}
node := &btNode{Data: root.Data}
Queue1, Queue2 := []*btNode{root}, []*btNode{node}
for len(Queue1) > 0 {
p1, p2 := Queue1[0], Queue2[0]
Queue1, Queue2 = Queue1[1:], Queue2[1:]
if p1.Lchild != nil {
Node := &btNode{Data: p1.Lchild.Data}
p2.Lchild = Node
Queue1 = append(Queue1, p1.Lchild)
Queue2 = append(Queue2, Node)
}
if p1.Rchild != nil {
Node := &btNode{Data: p1.Rchild.Data}
p2.Rchild = Node
Queue1 = append(Queue1, p1.Rchild)
Queue2 = append(Queue2, Node)
}
}
return &biTree{Root: node}
}相同二叉树
递归法
func Equal(bt1, bt2 *btNode) bool {
if bt1 == nil && bt2 == nil {
return true
} else if bt1 == nil || bt2 == nil {
return false
}
if bt1.Data != bt2.Data {
return false
}
return Equal(bt1.Lchild, bt2.Lchild) && Equal(bt1.Rchild, bt2.Rchild)
}
func (bt *biTree) Equal(bt2 *biTree) bool {
return Equal(bt.Root, bt2.Root)
}BFS
过程与复制副本类似,设置两个队列,同时遍历只要有一处不同即返回不相同。
func (bt *biTree) SameAs(bt2 *biTree) bool {
root1, root2 := bt.Root, bt2.Root
if root1 == nil && root2 == nil {
return true
} else if root1 == nil || root2 == nil {
return false
}
Queue1, Queue2 := []*btNode{root1}, []*btNode{root2}
p1, p2 := Queue1[0], Queue2[0]
for len(Queue1) > 0 && len(Queue2) > 0 {
p1, p2 = Queue1[0], Queue2[0]
Queue1, Queue2 = Queue1[1:], Queue2[1:]
if p1.Lchild != nil {
if p2.Lchild == nil || p1.Lchild.Data != p2.Lchild.Data {
return false
}
Queue1 = append(Queue1, p1.Lchild)
Queue2 = append(Queue2, p2.Lchild)
} else if p2.Lchild != nil {
if p1.Lchild == nil || p1.Lchild.Data != p2.Lchild.Data {
return false
}
Queue1 = append(Queue1, p1.Lchild)
Queue2 = append(Queue2, p2.Lchild)
}
if p1.Rchild != nil {
if p2.Rchild == nil || p1.Rchild.Data != p2.Rchild.Data {
return false
}
Queue1 = append(Queue1, p1.Rchild)
Queue2 = append(Queue2, p2.Rchild)
} else if p2.Rchild != nil {
if p1.Rchild == nil || p1.Rchild.Data != p2.Rchild.Data {
return false
}
Queue1 = append(Queue1, p1.Rchild)
Queue2 = append(Queue2, p2.Rchild)
}
}
return true
}
镜像二叉树
生成一棵二叉树的镜像:
递归法
func (bt *btNode) InvertNodes() {
if bt != nil {
bt.Lchild.InvertNodes()
bt.Rchild.InvertNodes()
bt.Lchild, bt.Rchild = bt.Rchild, bt.Lchild
}
}
func (bt *biTree) Mirror() {
bt.Root.InvertNodes()
}BFS
func Mirror(bt *biTree) *biTree {
root := bt.Root
if root == nil {
return &biTree{}
}
node := &btNode{Data: root.Data}
Queue1, Queue2 := []*btNode{root}, []*btNode{node}
for len(Queue1) > 0 {
p1, p2 := Queue1[0], Queue2[0]
Queue1, Queue2 = Queue1[1:], Queue2[1:]
if p1.Lchild != nil {
Node := &btNode{Data: p1.Lchild.Data}
p2.Rchild = Node
Queue1 = append(Queue1, p1.Lchild)
Queue2 = append(Queue2, Node)
}
if p1.Rchild != nil {
Node := &btNode{Data: p1.Rchild.Data}
p2.Lchild = Node
Queue1 = append(Queue1, p1.Rchild)
Queue2 = append(Queue2, Node)
}
}
return &biTree{Root: node}
}对称二叉树
方法一:判断左子树与右子树的反转是否相等
func (bt *biTree) IsSymmetry() bool {
return Equal(bt.Root.Lchild, bt.Root.Rchild.InvertNodes())
}方法二:判断自身与镜像是否相同
func (bt *biTree) IsSymmetry2() bool {
bt2 := Mirror(bt)
return bt.SameAs(bt2)
}判断二棵二叉树是否互为镜像
方法一:生成其中一棵的镜像,判断镜像与另一棵是否相同
func (bt *biTree) IsMirror(bt2 *biTree) bool {
return bt.SameAs(Mirror(bt2))
}方法二:分别以此二棵树作左右子树生成一棵新树,判断新树是否左右对称
func (bt *biTree) IsMirror(bt2 *biTree) bool {
root := &biTree{&btNode{1, bt.Root, bt2.Root}}
return root.IsSymmetry()
}包biTree函数汇总
至此,《数据结构:二叉树》系列(1~3)已累积了从创建、遍历等功能的20多个函数和方法,汇总如下:
/* The Package biTree
* https://hannyang.blog.csdn.net/article/details/126556548
*
* based on Go program by Hann Yang,
* modified on 2022/8/31.
*/
package biTree
type btNode struct {
Data interface{}
Lchild *btNode
Rchild *btNode
}
type biTree struct {
Root *btNode
}
func Build(data interface{}) *biTree {
var list []interface{}
if data == nil {
return &biTree{}
}
switch data.(type) {
case []interface{}:
list = append(list, data.([]interface{})...)
default:
list = append(list, data)
}
if len(list) == 0 {
return &biTree{}
}
node := &btNode{Data: list[0]}
list = list[1:]
Queue := []*btNode{node}
for len(list) > 0 {
if len(Queue) == 0 {
//panic("Given array can not build binary tree.")
return &biTree{Root: node}
}
cur := Queue[0]
val := list[0]
Queue = Queue[1:]
if val != nil {
cur.Lchild = &btNode{Data: val}
if cur.Lchild != nil {
Queue = append(Queue, cur.Lchild)
}
}
list = list[1:]
if len(list) > 0 {
val := list[0]
if val != nil {
cur.Rchild = &btNode{Data: val}
if cur.Rchild != nil {
Queue = append(Queue, cur.Rchild)
}
}
list = list[1:]
}
}
return &biTree{Root: node}
}
func Create(data interface{}) *biTree {
var list []interface{}
btree := &biTree{}
switch data.(type) {
case []interface{}:
list = append(list, data.([]interface{})...)
default:
list = append(list, data)
}
if len(list) > 0 {
btree.Root = &btNode{Data: list[0]}
for _, data := range list[1:] {
btree.AppendNode(data)
}
}
return btree
}
func (bt *biTree) Append(data interface{}) {
var list []interface{}
switch data.(type) {
case []interface{}:
list = append(list, data.([]interface{})...)
default:
list = append(list, data)
}
if len(list) > 0 {
for _, data := range list {
bt.AppendNode(data)
}
}
}
func (bt *biTree) AppendNode(data interface{}) {
root := bt.Root
if root == nil {
bt.Root = &btNode{Data: data}
return
}
Queue := []*btNode{root}
for len(Queue) > 0 {
cur := Queue[0]
Queue = Queue[1:]
if cur.Lchild != nil {
Queue = append(Queue, cur.Lchild)
} else {
cur.Lchild = &btNode{Data: data}
return
}
if cur.Rchild != nil {
Queue = append(Queue, cur.Rchild)
} else {
cur.Rchild = &btNode{Data: data}
break
}
}
}
func (bt *biTree) Levelorder() []interface{} { //BFS
var res []interface{}
root := bt.Root
if root == nil {
return res
}
Queue := []*btNode{root}
for len(Queue) > 0 {
cur := Queue[0]
Queue = Queue[1:]
res = append(res, cur.Data)
if cur.Lchild != nil {
Queue = append(Queue, cur.Lchild)
}
if cur.Rchild != nil {
Queue = append(Queue, cur.Rchild)
}
}
return res
}
func (bt *biTree) BForder2D() [][]interface{} {
var res [][]interface{}
root := bt.Root
if root == nil {
return res
}
Queue := []*btNode{root}
for len(Queue) > 0 {
Nodes := []interface{}{}
Levels := len(Queue)
for Levels > 0 {
cur := Queue[0]
Queue = Queue[1:]
Nodes = append(Nodes, cur.Data)
Levels--
if cur.Lchild != nil {
Queue = append(Queue, cur.Lchild)
}
if cur.Rchild != nil {
Queue = append(Queue, cur.Rchild)
}
}
res = append(res, Nodes)
}
return res
}
func (bt *biTree) Preorder() []interface{} {
var res []interface{}
cur := bt.Root
Stack := []*btNode{}
for cur != nil || len(Stack) > 0 {
for cur != nil {
res = append(res, cur.Data)
Stack = append(Stack, cur)
cur = cur.Lchild
}
if len(Stack) > 0 {
cur = Stack[len(Stack)-1]
Stack = Stack[:len(Stack)-1]
cur = cur.Rchild
}
}
return res
}
func (bt *biTree) Inorder() []interface{} {
var res []interface{}
cur := bt.Root
Stack := []*btNode{}
for cur != nil || len(Stack) > 0 {
for cur != nil {
Stack = append(Stack, cur)
cur = cur.Lchild
}
if len(Stack) > 0 {
cur = Stack[len(Stack)-1]
res = append(res, cur.Data)
Stack = Stack[:len(Stack)-1]
cur = cur.Rchild
}
}
return res
}
func (bt *biTree) Postorder() []interface{} {
var res []interface{}
if bt.Root == nil {
return res
}
cur, pre := &btNode{}, &btNode{}
Stack := []*btNode{bt.Root}
for len(Stack) > 0 {
cur = Stack[len(Stack)-1]
if cur.Lchild == nil && cur.Rchild == nil ||
pre != nil && (pre == cur.Lchild || pre == cur.Rchild) {
res = append(res, cur.Data)
Stack = Stack[:len(Stack)-1]
pre = cur
} else {
if cur.Rchild != nil {
Stack = append(Stack, cur.Rchild)
}
if cur.Lchild != nil {
Stack = append(Stack, cur.Lchild)
}
}
}
return res
}
func (bt *btNode) MaxDepth() int {
if bt == nil {
return 0
}
Lmax := bt.Lchild.MaxDepth()
Rmax := bt.Rchild.MaxDepth()
return 1 + Max(Lmax, Rmax)
}
func (bt *btNode) MinDepth() int {
if bt == nil {
return 0
}
Lmin := bt.Lchild.MinDepth()
Rmin := bt.Rchild.MinDepth()
return 1 + Min(Lmin, Rmin)
}
func (bt *biTree) Depth() int { //BFS
res := 0
root := bt.Root
if root == nil {
return res
}
Queue := []*btNode{root}
for len(Queue) > 0 {
Levels := len(Queue)
for Levels > 0 {
cur := Queue[0]
Queue = Queue[1:]
if cur.Lchild != nil {
Queue = append(Queue, cur.Lchild)
}
if cur.Rchild != nil {
Queue = append(Queue, cur.Rchild)
}
Levels--
}
res++
}
return res
}
func (bt *btNode) Degree() int {
res := 0
if bt.Lchild != nil {
res++
}
if bt.Rchild != nil {
res++
}
return res
}
func (bt *biTree) LeafNodeBFS() []interface{} {
var res []interface{}
root := bt.Root
if root == nil {
return res
}
Queue := []*btNode{root}
for len(Queue) > 0 {
cur := Queue[0]
Queue = Queue[1:]
//if cur.Lchild == nil && cur.Rchild == nil {
if cur.Degree() == 0 {
res = append(res, cur.Data)
}
if cur.Lchild != nil {
Queue = append(Queue, cur.Lchild)
}
if cur.Rchild != nil {
Queue = append(Queue, cur.Rchild)
}
}
return res
}
func (bt *biTree) LeafNodeDFS() []interface{} {
var res []interface{}
cur := bt.Root
Stack := []*btNode{}
for cur != nil || len(Stack) > 0 {
for cur != nil {
//if cur.Lchild == nil && cur.Rchild == nil {
if cur.Degree() == 0 {
res = append(res, cur.Data)
}
Stack = append(Stack, cur)
cur = cur.Lchild
}
if len(Stack) > 0 {
cur = Stack[len(Stack)-1]
Stack = Stack[:len(Stack)-1]
cur = cur.Rchild
}
}
return res
}
func (bt *btNode) InvertNodes() *btNode {
if bt != nil {
bt.Lchild.InvertNodes()
bt.Rchild.InvertNodes()
bt.Lchild, bt.Rchild = bt.Rchild, bt.Lchild
}
return bt
}
func (bt *biTree) Mirror() {
bt.Root.InvertNodes()
}
func Copy(bt *biTree) *biTree {
root := bt.Root
if root == nil {
return &biTree{}
}
node := &btNode{Data: root.Data}
Queue1, Queue2 := []*btNode{root}, []*btNode{node}
for len(Queue1) > 0 {
p1, p2 := Queue1[0], Queue2[0]
Queue1, Queue2 = Queue1[1:], Queue2[1:]
if p1.Lchild != nil {
Node := &btNode{Data: p1.Lchild.Data}
p2.Lchild = Node
Queue1 = append(Queue1, p1.Lchild)
Queue2 = append(Queue2, Node)
}
if p1.Rchild != nil {
Node := &btNode{Data: p1.Rchild.Data}
p2.Rchild = Node
Queue1 = append(Queue1, p1.Rchild)
Queue2 = append(Queue2, Node)
}
}
return &biTree{Root: node}
}
func Mirror(bt *biTree) *biTree {
root := bt.Root
if root == nil {
return &biTree{}
}
node := &btNode{Data: root.Data}
Queue1, Queue2 := []*btNode{root}, []*btNode{node}
for len(Queue1) > 0 {
p1, p2 := Queue1[0], Queue2[0]
Queue1, Queue2 = Queue1[1:], Queue2[1:]
if p1.Lchild != nil {
Node := &btNode{Data: p1.Lchild.Data}
p2.Rchild = Node
Queue1 = append(Queue1, p1.Lchild)
Queue2 = append(Queue2, Node)
}
if p1.Rchild != nil {
Node := &btNode{Data: p1.Rchild.Data}
p2.Lchild = Node
Queue1 = append(Queue1, p1.Rchild)
Queue2 = append(Queue2, Node)
}
}
return &biTree{Root: node}
}
func Max(L, R int) int {
if L > R {
return L
} else {
return R
}
}
func Min(L, R int) int {
if L < R {
return L
} else {
return R
}
}
func Equal(bt1, bt2 *btNode) bool {
if bt1 == nil && bt2 == nil {
return true
} else if bt1 == nil || bt2 == nil {
return false
}
if bt1.Data != bt2.Data {
return false
}
return Equal(bt1.Lchild, bt2.Lchild) && Equal(bt1.Rchild, bt2.Rchild)
}
func (bt *biTree) Equal(bt2 *biTree) bool {
return Equal(bt.Root, bt2.Root)
}
func (bt *biTree) SameAs(bt2 *biTree) bool {
root1, root2 := bt.Root, bt2.Root
if root1 == nil && root2 == nil {
return true
} else if root1 == nil || root2 == nil {
return false
}
Queue1, Queue2 := []*btNode{root1}, []*btNode{root2}
p1, p2 := Queue1[0], Queue2[0]
for len(Queue1) > 0 && len(Queue2) > 0 {
p1, p2 = Queue1[0], Queue2[0]
Queue1, Queue2 = Queue1[1:], Queue2[1:]
if p1.Lchild != nil {
if p2.Lchild == nil || p1.Lchild.Data != p2.Lchild.Data {
return false
}
Queue1 = append(Queue1, p1.Lchild)
Queue2 = append(Queue2, p2.Lchild)
} else if p2.Lchild != nil {
if p1.Lchild == nil || p1.Lchild.Data != p2.Lchild.Data {
return false
}
Queue1 = append(Queue1, p1.Lchild)
Queue2 = append(Queue2, p2.Lchild)
}
if p1.Rchild != nil {
if p2.Rchild == nil || p1.Rchild.Data != p2.Rchild.Data {
return false
}
Queue1 = append(Queue1, p1.Rchild)
Queue2 = append(Queue2, p2.Rchild)
} else if p2.Rchild != nil {
if p1.Rchild == nil || p1.Rchild.Data != p2.Rchild.Data {
return false
}
Queue1 = append(Queue1, p1.Rchild)
Queue2 = append(Queue2, p2.Rchild)
}
}
return true
}
func (bt *biTree) MirrorOf(bt2 *biTree) bool {
return bt.SameAs(Mirror(bt2))
}
func (bt *biTree) IsMirror(bt2 *biTree) bool {
root := &biTree{&btNode{1, bt.Root, bt2.Root}}
return root.IsSymmetry()
}
func (bt *biTree) IsSymmetry() bool {
return Equal(bt.Root.Lchild, bt.Root.Rchild.InvertNodes())
}
func (bt *biTree) IsSymmetry2() bool {
bt2 := Mirror(bt)
return bt.SameAs(bt2)
}另外:从leetcode题目中整理了50多个与二叉树相关的题目,对照看看还有多少没刷过?

到此这篇关于go语言算法题解二叉树的拷贝、镜像和对称的文章就介绍到这了,更多相关go之二叉树的拷贝、镜像和对称内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!
