MybatisPlus批量保存原理及失效原因排查全过程
作者:八球
问题描述
一般情况下,在MybatisPlus中使用saveBatch方法进行批量保存只需要:在数据库连接串中添加&rewriteBatchedStatements=true,并将MySQL驱动保证在5.0.18以上即可。
但是在这里实际使用中批量保存并没有生效,列表数据被分组成几批数据保存,而不是一批数据保存,通过调试、查看数据库日志等方式可以验证。
所以现在是配置正确,驱动正确,批量保存的数据正确,但是批量保存没有生效。
批量保存原理
框架是不会出问题的,这里来看下MybatisPlus实现批量保存的实现方式,调用saveBatch方法后发生了什么。
ServiceImpl.saveBatch()
@Transactional(rollbackFor = Exception.class) @Override public boolean saveBatch(Collection<T> entityList, int batchSize) { // ${className}.insert String sqlStatement = getSqlStatement(SqlMethod.INSERT_ONE); // 函数式编程 BiConsumer<T, U> return executeBatch(entityList, batchSize, (sqlSession, entity) -> sqlSession.insert(sqlStatement, entity)); }
采用函数式编程实现BiConsumer接口,其用法相当于
@Override public boolean saveBatch(Collection entityList, int batchSize) { BiConsumer<SqlSession, Object> consumer = new EntityConsumer(); return executeBatch(entityList, batchSize, consumer); } class EntityConsumer implements BiConsumer<SqlSession, Object>{ @Override public void accept(SqlSession sqlSession, Object object) { sqlSession.insert("${className}.insert", object); } }
SqlHelper.executeBatch()
定义批量保存的模板方法
public static <E> boolean executeBatch(Class<?> entityClass, Log log, Collection<E> list, int batchSize, BiConsumer<SqlSession, E> consumer) { Assert.isFalse(batchSize < 1, "batchSize must not be less than one"); return !CollectionUtils.isEmpty(list) && executeBatch(entityClass, log, sqlSession -> { int size = list.size(); int i = 1; for (E element : list) { // 调用sqlSession.insert("${className}.insert", object); // 数据最终保存到StatementImpl.batchedArgs中,用于后面做批量保存 consumer.accept(sqlSession, element); if ((i % batchSize == 0) || i == size) { // 批量保存StatementImpl.batchedArgs中的数据 sqlSession.flushStatements(); } i++; } }); }
MybatisBatchExecutor.doUpdate()
将待执行对象添加到对应的Statement中,可以理解为将批量数据分组,分组的依据包含两个:
if (sql.equals(currentSql) && ms.equals(currentStatement))
● 数据的SQL语句必须完全一致,包括表名和列
● 使用的MappedStatement一致,即Mapper一致
@Override public int doUpdate(MappedStatement ms, Object parameterObject) throws SQLException { final Configuration configuration = ms.getConfiguration(); final StatementHandler handler = configuration.newStatementHandler(this, ms, parameterObject, RowBounds.DEFAULT, null, null); final BoundSql boundSql = handler.getBoundSql(); final String sql = boundSql.getSql(); final Statement stmt; // ** if (sql.equals(currentSql) && ms.equals(currentStatement)) { int last = statementList.size() - 1; stmt = statementList.get(last); applyTransactionTimeout(stmt); handler.parameterize(stmt);//fix Issues 322 BatchResult batchResult = batchResultList.get(last); batchResult.addParameterObject(parameterObject); } else { Connection connection = getConnection(ms.getStatementLog()); stmt = handler.prepare(connection, transaction.getTimeout()); if (stmt == null) { return 0; } handler.parameterize(stmt); //fix Issues 322 currentSql = sql; currentStatement = ms; statementList.add(stmt); batchResultList.add(new BatchResult(ms, sql, parameterObject)); } handler.batch(stmt); return BATCH_UPDATE_RETURN_VALUE; }
PreparedStatement.addBatch()
将数据添加到StatementImpl.batchedArgs中,至此第一阶段完成
public void addBatch() throws SQLException { synchronized (checkClosed().getConnectionMutex()) { if (this.batchedArgs == null) { this.batchedArgs = new ArrayList<Object>(); } for (int i = 0; i < this.parameterValues.length; i++) { checkAllParametersSet(this.parameterValues[i], this.parameterStreams[i], i); } this.batchedArgs.add(new BatchParams(this.parameterValues, this.parameterStreams, this.isStream, this.streamLengths, this.isNull)); } }
MybatisBatchExecutor.doFlushStatements()
遍历Statemen,并执行executeBatch()方法
@Override public List<BatchResult> doFlushStatements(boolean isRollback) throws SQLException { try { List<BatchResult> results = new ArrayList<>(); if (isRollback) { return Collections.emptyList(); } for (int i = 0, n = statementList.size(); i < n; i++) { Statement stmt = statementList.get(i); applyTransactionTimeout(stmt); BatchResult batchResult = batchResultList.get(i); try { batchResult.setUpdateCounts(stmt.executeBatch()); MappedStatement ms = batchResult.getMappedStatement(); List<Object> parameterObjects = batchResult.getParameterObjects(); KeyGenerator keyGenerator = ms.getKeyGenerator(); if (Jdbc3KeyGenerator.class.equals(keyGenerator.getClass())) { Jdbc3KeyGenerator jdbc3KeyGenerator = (Jdbc3KeyGenerator) keyGenerator; jdbc3KeyGenerator.processBatch(ms, stmt, parameterObjects); } else if (!NoKeyGenerator.class.equals(keyGenerator.getClass())) { //issue #141 for (Object parameter : parameterObjects) { keyGenerator.processAfter(this, ms, stmt, parameter); } } // Close statement to close cursor #1109 closeStatement(stmt); } catch (BatchUpdateException e) { StringBuilder message = new StringBuilder(); message.append(batchResult.getMappedStatement().getId()) .append(" (batch index #") .append(i + 1) .append(")") .append(" failed."); if (i > 0) { message.append(" ") .append(i) .append(" prior sub executor(s) completed successfully, but will be rolled back."); } throw new BatchExecutorException(message.toString(), e, results, batchResult); } results.add(batchResult); } return results; } finally { for (Statement stmt : statementList) { closeStatement(stmt); } currentSql = null; statementList.clear(); batchResultList.clear(); } }
PreparedStatement.executeBatchInternal()
最终执行批量操作的逻辑,这里会判断rewriteBatchedStatements参数
@Override protected long[] executeBatchInternal() throws SQLException { synchronized (checkClosed().getConnectionMutex()) { if (this.connection.isReadOnly()) { throw new SQLException(Messages.getString("PreparedStatement.25") + Messages.getString("PreparedStatement.26"), SQLError.SQL_STATE_ILLEGAL_ARGUMENT); } if (this.batchedArgs == null || this.batchedArgs.size() == 0) { return new long[0]; } // we timeout the entire batch, not individual statements int batchTimeout = this.timeoutInMillis; this.timeoutInMillis = 0; resetCancelledState(); try { statementBegins(); clearWarnings(); // 判断rewriteBatchedStatements参数 if (!this.batchHasPlainStatements && this.connection.getRewriteBatchedStatements()) { if (canRewriteAsMultiValueInsertAtSqlLevel()) { return executeBatchedInserts(batchTimeout); } if (this.connection.versionMeetsMinimum(4, 1, 0) && !this.batchHasPlainStatements && this.batchedArgs != null && this.batchedArgs.size() > 3 /* cost of option setting rt-wise */) { return executePreparedBatchAsMultiStatement(batchTimeout); } } return executeBatchSerially(batchTimeout); } finally { this.statementExecuting.set(false); clearBatch(); } } }
问题排查
在流程中几个关键节点为:
● MybatisBatchExecutor:1、执行数据分组逻辑。2、遍历Statement执行批量保存逻辑。
● StatementImpl:保存batchedArgs
● PreparedStatement:执行最终的批量保存逻辑
可以看出JDK层只执行最终的保存操作,如果这里的数据batchedArgs没有拿到批量的,那一定是MybatisPlus的分组逻辑出现问题。通过调试发现问题出现在
if (sql.equals(currentSql) && ms.equals(currentStatement))
由于有些数据有些列没有默认值导致SQL的列不同,数据被添加到不同的Statement执行,导致最终的批量操作失效。
总结
整个批量过程可以分为两个阶段:
- 1、将批量数据添加到statementImpl.batchedArgs中保存。
- 2、调用statement.executeBatch方法完成批量。
来看下这两步最基本的操作之上,MybatisPlus做了哪些事情:
- 1、定义批量操作的模板。
- 2、验证集合中的数据,将完全一致的SQL添加到同一个Statement中。
- 3、Jdbc3KeyGenerator?
值得注意的是,批量模板中的单条新增调用的是sqlSession.insert(),这个方法是没有执行execute的,只是将数据放到statementImpl.batchedArgs中。而常规的单条新增调用的是baseMapper.insert()方法,其是基于动态代理的方法来实现。
可以看出以上流程经历了已知的四层结构:MybatisPlus–>Mybatis–>MySQL connector–>JDK。其最底层还是通过preparedStatement来实现批量操作,和我们通过原始JDBC来实现批量操作的原理相同,上层都是框架实现的封装。
以上为个人经验,希望能给大家一个参考,也希望大家多多支持脚本之家。