手把手教你YOLOv5如何进行区域目标检测
作者:wiz_k
提示:本项目的源码是基于yolov5 6.0版本修改
效果展示
在使用YOLOv5的有些时候,我们会遇到一些具体的目标检测要求,比如要求不检测全图,只在规定的区域内才检测。所以为了满足这个需求,可以用一个mask覆盖掉不想检测的区域,使得YOLOv5在检测的时候,该覆盖区域就不纳入检测范围。
话不多说,直接上检测效果,可以很直观的看到目标在进入规定的检测区域才得到检测。
一、确定检测范围
快捷查询方法:
- 用windows自带画图打开图片
- 鼠标移到想要框选检测区域的四个顶点,查询点的像素坐标
- 分别计算点的像素坐标与图片总像素坐标的比例(后面要用)
查询方法如下图所示:
提示:以下是计算的举例说明,仅供参考
例如:图中所标注的点(1010,174)代表(x,y)坐标
hl1 = 174 / 768 (可约分)监测区域纵坐标距离图片***顶部*** 比例
wl1 = 1010 / 1614 (可约分)监测区域横坐标距离图片***左部*** 比例
这里只举例了一个点,如检测范围是四边形,需要计算左上,右上,右下,左下四个顶点。
二、detect.py代码修改
1.确定区域检测范围
在下面代码位置填上计算好的比例:
# mask for certain region #1,2,3,4 分别对应左上,右上,右下,左下四个点 hl1 = 1.4 / 10 #监测区域高度距离图片顶部比例 wl1 = 6.4 / 10 #监测区域高度距离图片左部比例 hl2 = 1.4 / 10 # 监测区域高度距离图片顶部比例 wl2 = 6.8 / 10 # 监测区域高度距离图片左部比例 hl3 = 4.5 / 10 # 监测区域高度距离图片顶部比例 wl3 = 7.6 / 10 # 监测区域高度距离图片左部比例 hl4 = 4.5 / 10 # 监测区域高度距离图片顶部比例 wl4 = 5.5 / 10 # 监测区域高度距离图片左部比例
在135行:for path, img, im0s, vid_cap in dataset: 下插入代码:
# mask for certain region #1,2,3,4 分别对应左上,右上,右下,左下四个点 hl1 = 1.6 / 10 #监测区域高度距离图片顶部比例 wl1 = 6.4 / 10 #监测区域高度距离图片左部比例 hl2 = 1.6 / 10 # 监测区域高度距离图片顶部比例 wl2 = 6.8 / 10 # 监测区域高度距离图片左部比例 hl3 = 4.5 / 10 # 监测区域高度距离图片顶部比例 wl3 = 7.6 / 10 # 监测区域高度距离图片左部比例 hl4 = 4.5 / 10 # 监测区域高度距离图片顶部比例 wl4 = 5.5 / 10 # 监测区域高度距离图片左部比例 if webcam: for b in range(0,img.shape[0]): mask = np.zeros([img[b].shape[1], img[b].shape[2]], dtype=np.uint8) #mask[round(img[b].shape[1] * hl1):img[b].shape[1], round(img[b].shape[2] * wl1):img[b].shape[2]] = 255 pts = np.array([[int(img[b].shape[2] * wl1), int(img[b].shape[1] * hl1)], # pts1 [int(img[b].shape[2] * wl2), int(img[b].shape[1] * hl2)], # pts2 [int(img[b].shape[2] * wl3), int(img[b].shape[1] * hl3)], # pts3 [int(img[b].shape[2] * wl4), int(img[b].shape[1] * hl4)]], np.int32) mask = cv2.fillPoly(mask,[pts],(255,255,255)) imgc = img[b].transpose((1, 2, 0)) imgc = cv2.add(imgc, np.zeros(np.shape(imgc), dtype=np.uint8), mask=mask) #cv2.imshow('1',imgc) img[b] = imgc.transpose((2, 0, 1)) else: mask = np.zeros([img.shape[1], img.shape[2]], dtype=np.uint8) #mask[round(img.shape[1] * hl1):img.shape[1], round(img.shape[2] * wl1):img.shape[2]] = 255 pts = np.array([[int(img.shape[2] * wl1), int(img.shape[1] * hl1)], # pts1 [int(img.shape[2] * wl2), int(img.shape[1] * hl2)], # pts2 [int(img.shape[2] * wl3), int(img.shape[1] * hl3)], # pts3 [int(img.shape[2] * wl4), int(img.shape[1] * hl4)]], np.int32) mask = cv2.fillPoly(mask, [pts], (255,255,255)) img = img.transpose((1, 2, 0)) img = cv2.add(img, np.zeros(np.shape(img), dtype=np.uint8), mask=mask) img = img.transpose((2, 0, 1))
2.画检测区域线(若不想像效果图一样显示出检测区域可不添加)
在196行: p, s, im0, frame = path, ‘’, im0s.copy(), getattr(dataset, ‘frame’, 0) 后添加
if webcam: # batch_size >= 1 p, s, im0, frame = path[i], f'{i}: ', im0s[i].copy(), dataset.count cv2.putText(im0, "Detection_Region", (int(im0.shape[1] * wl1 - 5), int(im0.shape[0] * hl1 - 5)), cv2.FONT_HERSHEY_SIMPLEX, 1.0, (255, 255, 0), 2, cv2.LINE_AA) pts = np.array([[int(im0.shape[1] * wl1), int(im0.shape[0] * hl1)], # pts1 [int(im0.shape[1] * wl2), int(im0.shape[0] * hl2)], # pts2 [int(im0.shape[1] * wl3), int(im0.shape[0] * hl3)], # pts3 [int(im0.shape[1] * wl4), int(im0.shape[0] * hl4)]], np.int32) # pts4 # pts = pts.reshape((-1, 1, 2)) zeros = np.zeros((im0.shape), dtype=np.uint8) mask = cv2.fillPoly(zeros, [pts], color=(0, 165, 255)) im0 = cv2.addWeighted(im0, 1, mask, 0.2, 0) cv2.polylines(im0, [pts], True, (255, 255, 0), 3) # plot_one_box(dr, im0, label='Detection_Region', color=(0, 255, 0), line_thickness=2) else: p, s, im0, frame = path, '', im0s.copy(), getattr(dataset, 'frame', 0) cv2.putText(im0, "Detection_Region", (int(im0.shape[1] * wl1 - 5), int(im0.shape[0] * hl1 - 5)), cv2.FONT_HERSHEY_SIMPLEX, 1.0, (255, 255, 0), 2, cv2.LINE_AA) pts = np.array([[int(im0.shape[1] * wl1), int(im0.shape[0] * hl1)], # pts1 [int(im0.shape[1] * wl2), int(im0.shape[0] * hl2)], # pts2 [int(im0.shape[1] * wl3), int(im0.shape[0] * hl3)], # pts3 [int(im0.shape[1] * wl4), int(im0.shape[0] * hl4)]], np.int32) # pts4 # pts = pts.reshape((-1, 1, 2)) zeros = np.zeros((im0.shape), dtype=np.uint8) mask = cv2.fillPoly(zeros, [pts], color=(0, 165, 255)) im0 = cv2.addWeighted(im0, 1, mask, 0.2, 0) cv2.polylines(im0, [pts], True, (255, 255, 0), 3)
总结
基于yolov5的区域目标检测实质上就是在图片选定检测区域做一个遮掩mask,检测区域不一定为四边形,也可是其他形状。该方法可检测图片/视频/摄像头。
提示:使用该方法要先确定数据集图像是否像监控图像一样,画面主体保持不变
原理展现如图所示:(图片参考http://t.csdn.cn/lgyO1)
整体detect.py修改代码
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license """ Run inference on images, videos, directories, streams, etc. Usage: $ python path/to/detect.py --source path/to/img.jpg --weights yolov5s.pt --img 640 """ import argparse import os import sys from pathlib import Path import cv2 import numpy as np import torch import torch.backends.cudnn as cudnn FILE = Path(__file__).resolve() ROOT = FILE.parents[0] # YOLOv5 root directory if str(ROOT) not in sys.path: sys.path.append(str(ROOT)) # add ROOT to PATH ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative from models.experimental import attempt_load from utils.datasets import LoadImages, LoadStreams from utils.general import apply_classifier, check_img_size, check_imshow, check_requirements, check_suffix, colorstr, \ increment_path, non_max_suppression, print_args, save_one_box, scale_coords, set_logging, \ strip_optimizer, xyxy2xywh from utils.plots import Annotator, colors from utils.torch_utils import load_classifier, select_device, time_sync @torch.no_grad() def run(weights=ROOT / 'yolov5s.pt', # model.pt path(s) source=ROOT / 'data/images', # file/dir/URL/glob, 0 for webcam imgsz=640, # inference size (pixels) conf_thres=0.25, # confidence threshold iou_thres=0.45, # NMS IOU threshold max_det=1000, # maximum detections per image device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu view_img=False, # show results save_txt=False, # save results to *.txt save_conf=False, # save confidences in --save-txt labels save_crop=False, # save cropped prediction boxes nosave=False, # do not save images/videos classes=None, # filter by class: --class 0, or --class 0 2 3 agnostic_nms=False, # class-agnostic NMS augment=False, # augmented inference visualize=False, # visualize features update=False, # update all models project=ROOT / 'runs/detect', # save results to project/name name='exp', # save results to project/name exist_ok=False, # existing project/name ok, do not increment line_thickness=3, # bounding box thickness (pixels) hide_labels=False, # hide labels hide_conf=False, # hide confidences half=False, # use FP16 half-precision inference dnn=False, # use OpenCV DNN for ONNX inference ): source = str(source) save_img = not nosave and not source.endswith('.txt') # save inference images webcam = source.isnumeric() or source.endswith('.txt') or source.lower().startswith( ('rtsp://', 'rtmp://', 'http://', 'https://')) # Directories save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir # Initialize set_logging() device = select_device(device) half &= device.type != 'cpu' # half precision only supported on CUDA # Load model w = str(weights[0] if isinstance(weights, list) else weights) classify, suffix, suffixes = False, Path(w).suffix.lower(), ['.pt', '.onnx', '.tflite', '.pb', ''] check_suffix(w, suffixes) # check weights have acceptable suffix pt, onnx, tflite, pb, saved_model = (suffix == x for x in suffixes) # backend booleans stride, names = 64, [f'class{i}' for i in range(1000)] # assign defaults if pt: model = torch.jit.load(w) if 'torchscript' in w else attempt_load(weights, map_location=device) stride = int(model.stride.max()) # model stride names = model.module.names if hasattr(model, 'module') else model.names # get class names if half: model.half() # to FP16 if classify: # second-stage classifier modelc = load_classifier(name='resnet50', n=2) # initialize modelc.load_state_dict(torch.load('resnet50.pt', map_location=device)['model']).to(device).eval() elif onnx: if dnn: # check_requirements(('opencv-python>=4.5.4',)) net = cv2.dnn.readNetFromONNX(w) else: check_requirements(('onnx', 'onnxruntime')) import onnxruntime session = onnxruntime.InferenceSession(w, None) else: # TensorFlow models check_requirements(('tensorflow>=2.4.1',)) import tensorflow as tf if pb: # https://www.tensorflow.org/guide/migrate#a_graphpb_or_graphpbtxt def wrap_frozen_graph(gd, inputs, outputs): x = tf.compat.v1.wrap_function(lambda: tf.compat.v1.import_graph_def(gd, name=""), []) # wrapped import return x.prune(tf.nest.map_structure(x.graph.as_graph_element, inputs), tf.nest.map_structure(x.graph.as_graph_element, outputs)) graph_def = tf.Graph().as_graph_def() graph_def.ParseFromString(open(w, 'rb').read()) frozen_func = wrap_frozen_graph(gd=graph_def, inputs="x:0", outputs="Identity:0") elif saved_model: model = tf.keras.models.load_model(w) elif tflite: interpreter = tf.lite.Interpreter(model_path=w) # load TFLite model interpreter.allocate_tensors() # allocate input_details = interpreter.get_input_details() # inputs output_details = interpreter.get_output_details() # outputs int8 = input_details[0]['dtype'] == np.uint8 # is TFLite quantized uint8 model imgsz = check_img_size(imgsz, s=stride) # check image size # Dataloader if webcam: view_img = check_imshow() cudnn.benchmark = True # set True to speed up constant image size inference dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt) bs = len(dataset) # batch_size else: dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt) bs = 1 # batch_size vid_path, vid_writer = [None] * bs, [None] * bs # Run inference if pt and device.type != 'cpu': model(torch.zeros(1, 3, *imgsz).to(device).type_as(next(model.parameters()))) # run once dt, seen = [0.0, 0.0, 0.0], 0 for path, img, im0s, vid_cap in dataset: # mask for certain region #1,2,3,4 分别对应左上,右上,右下,左下四个点 hl1 = 1.6 / 10 #监测区域高度距离图片顶部比例 wl1 = 6.4 / 10 #监测区域高度距离图片左部比例 hl2 = 1.6 / 10 # 监测区域高度距离图片顶部比例 wl2 = 6.8 / 10 # 监测区域高度距离图片左部比例 hl3 = 4.5 / 10 # 监测区域高度距离图片顶部比例 wl3 = 7.6 / 10 # 监测区域高度距离图片左部比例 hl4 = 4.5 / 10 # 监测区域高度距离图片顶部比例 wl4 = 5.5 / 10 # 监测区域高度距离图片左部比例 if webcam: for b in range(0,img.shape[0]): mask = np.zeros([img[b].shape[1], img[b].shape[2]], dtype=np.uint8) #mask[round(img[b].shape[1] * hl1):img[b].shape[1], round(img[b].shape[2] * wl1):img[b].shape[2]] = 255 pts = np.array([[int(img[b].shape[2] * wl1), int(img[b].shape[1] * hl1)], # pts1 [int(img[b].shape[2] * wl2), int(img[b].shape[1] * hl2)], # pts2 [int(img[b].shape[2] * wl3), int(img[b].shape[1] * hl3)], # pts3 [int(img[b].shape[2] * wl4), int(img[b].shape[1] * hl4)]], np.int32) mask = cv2.fillPoly(mask,[pts],(255,255,255)) imgc = img[b].transpose((1, 2, 0)) imgc = cv2.add(imgc, np.zeros(np.shape(imgc), dtype=np.uint8), mask=mask) #cv2.imshow('1',imgc) img[b] = imgc.transpose((2, 0, 1)) else: mask = np.zeros([img.shape[1], img.shape[2]], dtype=np.uint8) #mask[round(img.shape[1] * hl1):img.shape[1], round(img.shape[2] * wl1):img.shape[2]] = 255 pts = np.array([[int(img.shape[2] * wl1), int(img.shape[1] * hl1)], # pts1 [int(img.shape[2] * wl2), int(img.shape[1] * hl2)], # pts2 [int(img.shape[2] * wl3), int(img.shape[1] * hl3)], # pts3 [int(img.shape[2] * wl4), int(img.shape[1] * hl4)]], np.int32) mask = cv2.fillPoly(mask, [pts], (255,255,255)) img = img.transpose((1, 2, 0)) img = cv2.add(img, np.zeros(np.shape(img), dtype=np.uint8), mask=mask) img = img.transpose((2, 0, 1)) t1 = time_sync() if onnx: img = img.astype('float32') else: img = torch.from_numpy(img).to(device) img = img.half() if half else img.float() # uint8 to fp16/32 img = img / 255.0 # 0 - 255 to 0.0 - 1.0 if len(img.shape) == 3: img = img[None] # expand for batch dim t2 = time_sync() dt[0] += t2 - t1 # Inference if pt: visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False pred = model(img, augment=augment, visualize=visualize)[0] elif onnx: if dnn: net.setInput(img) pred = torch.tensor(net.forward()) else: pred = torch.tensor(session.run([session.get_outputs()[0].name], {session.get_inputs()[0].name: img})) else: # tensorflow model (tflite, pb, saved_model) imn = img.permute(0, 2, 3, 1).cpu().numpy() # image in numpy if pb: pred = frozen_func(x=tf.constant(imn)).numpy() elif saved_model: pred = model(imn, training=False).numpy() elif tflite: if int8: scale, zero_point = input_details[0]['quantization'] imn = (imn / scale + zero_point).astype(np.uint8) # de-scale interpreter.set_tensor(input_details[0]['index'], imn) interpreter.invoke() pred = interpreter.get_tensor(output_details[0]['index']) if int8: scale, zero_point = output_details[0]['quantization'] pred = (pred.astype(np.float32) - zero_point) * scale # re-scale pred[..., 0] *= imgsz[1] # x pred[..., 1] *= imgsz[0] # y pred[..., 2] *= imgsz[1] # w pred[..., 3] *= imgsz[0] # h pred = torch.tensor(pred) t3 = time_sync() dt[1] += t3 - t2 # NMS pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det) dt[2] += time_sync() - t3 # Second-stage classifier (optional) if classify: pred = apply_classifier(pred, modelc, img, im0s) # Process predictions for i, det in enumerate(pred): # per image seen += 1 # if webcam: # batch_size >= 1 # p, s, im0, frame = path[i], f'{i}: ', im0s[i].copy(), dataset.count # else: # p, s, im0, frame = path, '', im0s.copy(), getattr(dataset, 'frame', 0) if webcam: # batch_size >= 1 p, s, im0, frame = path[i], f'{i}: ', im0s[i].copy(), dataset.count cv2.putText(im0, "Detection_Region", (int(im0.shape[1] * wl1 - 5), int(im0.shape[0] * hl1 - 5)), cv2.FONT_HERSHEY_SIMPLEX, 1.0, (255, 255, 0), 2, cv2.LINE_AA) pts = np.array([[int(im0.shape[1] * wl1), int(im0.shape[0] * hl1)], # pts1 [int(im0.shape[1] * wl2), int(im0.shape[0] * hl2)], # pts2 [int(im0.shape[1] * wl3), int(im0.shape[0] * hl3)], # pts3 [int(im0.shape[1] * wl4), int(im0.shape[0] * hl4)]], np.int32) # pts4 # pts = pts.reshape((-1, 1, 2)) zeros = np.zeros((im0.shape), dtype=np.uint8) mask = cv2.fillPoly(zeros, [pts], color=(0, 165, 255)) im0 = cv2.addWeighted(im0, 1, mask, 0.2, 0) cv2.polylines(im0, [pts], True, (255, 255, 0), 3) # plot_one_box(dr, im0, label='Detection_Region', color=(0, 255, 0), line_thickness=2) else: p, s, im0, frame = path, '', im0s.copy(), getattr(dataset, 'frame', 0) cv2.putText(im0, "Detection_Region", (int(im0.shape[1] * wl1 - 5), int(im0.shape[0] * hl1 - 5)), cv2.FONT_HERSHEY_SIMPLEX, 1.0, (255, 255, 0), 2, cv2.LINE_AA) pts = np.array([[int(im0.shape[1] * wl1), int(im0.shape[0] * hl1)], # pts1 [int(im0.shape[1] * wl2), int(im0.shape[0] * hl2)], # pts2 [int(im0.shape[1] * wl3), int(im0.shape[0] * hl3)], # pts3 [int(im0.shape[1] * wl4), int(im0.shape[0] * hl4)]], np.int32) # pts4 # pts = pts.reshape((-1, 1, 2)) zeros = np.zeros((im0.shape), dtype=np.uint8) mask = cv2.fillPoly(zeros, [pts], color=(0, 165, 255)) im0 = cv2.addWeighted(im0, 1, mask, 0.2, 0) cv2.polylines(im0, [pts], True, (255, 255, 0), 3) p = Path(p) # to Path save_path = str(save_dir / p.name) # img.jpg txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}') # img.txt s += '%gx%g ' % img.shape[2:] # print string gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh imc = im0.copy() if save_crop else im0 # for save_crop annotator = Annotator(im0, line_width=line_thickness, example=str(names)) if len(det): # Rescale boxes from img_size to im0 size det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round() # Print results for c in det[:, -1].unique(): n = (det[:, -1] == c).sum() # detections per class s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string # Write results for *xyxy, conf, cls in reversed(det): if save_txt: # Write to file xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format with open(txt_path + '.txt', 'a') as f: f.write(('%g ' * len(line)).rstrip() % line + '\n') if save_img or save_crop or view_img: # Add bbox to image c = int(cls) # integer class label = None if hide_labels else (names[c] if hide_conf else f'{names[c]} {conf:.2f}') annotator.box_label(xyxy, label, color=colors(c, True)) if save_crop: save_one_box(xyxy, imc, file=save_dir / 'crops' / names[c] / f'{p.stem}.jpg', BGR=True) # Print time (inference-only) print(f'{s}Done. ({t3 - t2:.3f}s)') # Stream results im0 = annotator.result() if view_img: cv2.imshow(str(p), im0) cv2.waitKey(1) # 1 millisecond # Save results (image with detections) if save_img: if dataset.mode == 'image': cv2.imwrite(save_path, im0) else: # 'video' or 'stream' if vid_path[i] != save_path: # new video vid_path[i] = save_path if isinstance(vid_writer[i], cv2.VideoWriter): vid_writer[i].release() # release previous video writer if vid_cap: # video fps = vid_cap.get(cv2.CAP_PROP_FPS) w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH)) h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) else: # stream fps, w, h = 30, im0.shape[1], im0.shape[0] save_path += '.mp4' vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h)) vid_writer[i].write(im0) # Print results t = tuple(x / seen * 1E3 for x in dt) # speeds per image print(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}' % t) if save_txt or save_img: s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else '' print(f"Results saved to {colorstr('bold', save_dir)}{s}") if update: strip_optimizer(weights) # update model (to fix SourceChangeWarning) def parse_opt(): parser = argparse.ArgumentParser() parser.add_argument('--weights', nargs='+', type=str, default=ROOT / '权重文件', help='model path(s)') parser.add_argument('--source', type=str, default=ROOT / '检测图片', help='file/dir/URL/glob, 0 for webcam') parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640], help='inference size h,w') parser.add_argument('--conf-thres', type=float, default=0.25, help='confidence threshold') parser.add_argument('--iou-thres', type=float, default=0.45, help='NMS IoU threshold') parser.add_argument('--max-det', type=int, default=1000, help='maximum detections per image') parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') parser.add_argument('--view-img', action='store_true', help='show results') parser.add_argument('--save-txt', action='store_true', help='save results to *.txt') parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels') parser.add_argument('--save-crop', action='store_true', help='save cropped prediction boxes') parser.add_argument('--nosave', action='store_true', help='do not save images/videos') parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --classes 0, or --classes 0 2 3') parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS') parser.add_argument('--augment', action='store_true', help='augmented inference') parser.add_argument('--visualize', action='store_true', help='visualize features') parser.add_argument('--update', action='store_true', help='update all models') parser.add_argument('--project', default=ROOT / 'runs/detect', help='save results to project/name') parser.add_argument('--name', default='exp', help='save results to project/name') parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment') parser.add_argument('--line-thickness', default=1, type=int, help='bounding box thickness (pixels)') parser.add_argument('--hide-labels', default=True, action='store_true', help='hide labels') parser.add_argument('--hide-conf', default=False, action='store_true', help='hide confidences') parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference') parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference') opt = parser.parse_args() opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1 # expand print_args(FILE.stem, opt) return opt def main(opt): check_requirements(exclude=('tensorboard', 'thop')) run(**vars(opt)) if __name__ == "__main__": opt = parse_opt() main(opt)
总结
到此这篇关于YOLOv5如何进行区域目标检测的文章就介绍到这了,更多相关YOLOv5区域目标检测内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!