Python使用邻接矩阵实现图及Dijkstra算法问题
作者:科恩兄弟
这篇文章主要介绍了Python使用邻接矩阵实现图及Dijkstra算法问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
使用邻接矩阵实现图及Dijkstra算法
# 邻接矩阵实现无向图 Dijkstra算法 inf = float("inf") class Graph(): def __init__(self, n): self.vertexn = n self.gType = 0 self.vertexes = [inf]*n self.arcs = [self.vertexes*n] # 邻接矩阵 self.visited = [False]*n # 用于深度遍历记录结点的访问情况 def addvertex(self, v, i): self.vertexes[i] = v def addarcs(self, row, column, weight): self.arcs[row][column] = weight # 深度优先遍历 def DFS(self, i): j = 0 print("vertex:{}".format(self.vertexes[i]), end=" ") # 先打印访问到的节点 self.visited[i] = True while j < self.vertexn: if (self.arcs[i][j] != inf) and (not self.visited[j]): print(self.arcs[i][j], end=" ") self.DFS(j) j += 1 # 广度优先遍历 def BFS(self, k): self.visited = [False]*self.vertexn # 访问性重置 q = [] print("vertex:{}".format(self.vertexes[k]), end=" ") self.visited[k] = True q.append(k) while q != []: i = q.pop(0) for j in range(self.vertexn): if(self.arcs[i][j] != inf) and (not self.visited[j]): print(self.arcs[i][j], end=" ") # 父节点与子节点的距离 print("vertex:{}".format(self.vertexes[j]), end=" ") self.visited[j] = True q.append(j) # 最短路径算法-Dijkstra 输入点v0,找到所有点到v0的最短距离 def Dijkstra(self, v0): # 初始化操作 D = [inf]*self.vertexn # 用于存放从顶点v0到v的最短路径长度 path = [None]*self.vertexn # 用于存放从顶点v0到v的路径 final = [None]*self.vertexn # 表示从v0到v的最短路径是否找到最短路径 for i in range(self.vertexn): final[i] = False D[i] = self.arcs[v0][i] path[i] = "" # 路径先置空 if D[i] < inf: path[i] = self.vertexes[i] # 如果v0直接连到第i点,则路径直接改为i D[v0] = 0 final[v0] = True ### for i in range(1, self.vertexn): min = inf # 找到离v0最近的顶点 for k in range(self.vertexn): if(not final[k]) and (D[k] < min): v = k min = D[k] final[v] = True # 最近的点找到,加入到已得最短路径集合S中 此后的min将在处S以外的vertex中产生 for k in range(self.vertexn): if(not final[k]) and (min+self.arcs[v][k] < D[k]): # 如果最短的距离(v0-v)加上v到k的距离小于现存v0到k的距离 D[k] = min+self.arcs[v][k] path[k] = path[v]+","+self.vertexes[k] return D, path if __name__ == "__main__": g = Graph(5) g.vertexes = ["A", "B", "C", "D", "E"] g.arcs = [[inf, 60, 80, 30, inf], [60, inf, 40, 75, inf], [ 80, 40, inf, inf, 35], [30, 75, inf, inf, 45], [inf, inf, 35, 45, inf]] print("深度优先遍历:") g.DFS(0) print("\n广度优先遍历:") g.BFS(0) print() print("Dijkstra搜索点到图中各点的最短路径:") D, path = g.Dijkstra(0) print(D) print(path)
将邻接矩阵输出成图
利用networkx,numpy,matplotlib,将邻接矩阵输出为图形。
1,自身确定一个邻接矩阵,然后通过循环的方式添加变,然后输出图像
import networkx as nx import matplotlib.pyplot as plt import numpy as np G = nx.Graph() Matrix = np.array( [ [0, 1, 1, 1, 1, 1, 0, 0], # a [0, 0, 1, 0, 1, 0, 0, 0], # b [0, 0, 0, 1, 0, 0, 0, 0], # c [0, 0, 0, 0, 1, 0, 0, 0], # d [0, 0, 0, 0, 0, 1, 0, 0], # e [0, 0, 1, 0, 0, 0, 1, 1], # f [0, 0, 0, 0, 0, 1, 0, 1], # g [0, 0, 0, 0, 0, 1, 1, 0] # h ] ) for i in range(len(Matrix)): for j in range(len(Matrix)): G.add_edge(i, j) nx.draw(G) plt.show()
2,有向图
G = nx.DiGraph() G.add_node(1) G.add_node(2) G.add_nodes_from([3, 4, 5, 6]) G.add_cycle([1, 2, 3, 4]) G.add_edge(1, 3) G.add_edges_from([(3, 5), (3, 6), (6, 7)]) nx.draw(G) # plt.savefig("youxiangtu.png") plt.show()
3,5节点完全图
G = nx.complete_graph(5) nx.draw(G) plt.savefig("8nodes.png") plt.show()
4,无向图
G = nx.Graph() G.add_node(1) G.add_node(2) G.add_nodes_from([3, 4, 5, 6]) G.add_cycle([1, 2, 3, 4]) G.add_edge(1, 3) G.add_edges_from([(3, 5), (3, 6), (6, 7)]) nx.draw(G) # plt.savefig("wuxiangtu.png") plt.show()
5,颜色节点图
G = nx.Graph() G.add_edges_from([(1, 2), (1, 3), (1, 4), (1, 5), (4, 5), (4, 6), (5, 6)]) pos = nx.spring_layout(G) colors = [1, 2, 3, 4, 5, 6] nx.draw_networkx_nodes(G, pos, node_color=colors) nx.draw_networkx_edges(G, pos) plt.axis('off') # plt.savefig("color_nodes.png") plt.show()
将图转化为邻接矩阵,再将邻接矩阵转化为图,还有图的集合表示,邻接矩阵表示,图形表示,这三种表现形式互相转化的问题是一个值得学习的地方。
总结
以上为个人经验,希望能给大家一个参考,也希望大家多多支持脚本之家。