java

关注公众号 jb51net

关闭
首页 > 软件编程 > java > Flink JobGraph生成

Flink JobGraph生成源码解析

作者:xiangel

这篇文章主要为大家介绍了Flink JobGraph生成源码解析,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪

引言

在DataStream基础中,由于其中的内容较多,只是介绍了JobGraph的结果,而没有涉及到StreamGraph到JobGraph的转换过程。本篇我们来介绍下JobGraph的生成的详情,重点是Operator可以串联成Chain的条件

概念

首先我们来回顾下JobGraph中的相关概念

JobGraph生成

前面我们在介绍部署的时候,有介绍具体是通过PipelineExecutor的execute()方法来提交对应的任务,StreamGraph到JobGraph的转换逻辑就是在该方法中处理的,具体是通过如下方法来进行处理

public static JobGraph getJobGraph(
            @Nonnull final Pipeline pipeline, @Nonnull final Configuration configuration)

最后执行转换的类为FlinkPipelineTranslator,调用的是其中的translateToJobGraph方法。

JobGraph translateToJobGraph(
            Pipeline pipeline, Configuration optimizerConfiguration, int defaultParallelism);

这里有2个不同的实现类

 private JobGraph createJobGraph() {
        preValidate();
        jobGraph.setJobType(streamGraph.getJobType());
![image.png](https://p1-juejin.byteimg.com/tos-cn-i-k3u1fbpfcp/0603957ea34f4d6b9af96b686bd5fdb1~tplv-k3u1fbpfcp-watermark.image?)
        jobGraph.enableApproximateLocalRecovery(
                streamGraph.getCheckpointConfig().isApproximateLocalRecoveryEnabled());
        // Generate deterministic hashes for the nodes in order to identify them across
        // submission iff they didn't change.
        Map<Integer, byte[]> hashes =
                defaultStreamGraphHasher.traverseStreamGraphAndGenerateHashes(streamGraph);
        // Generate legacy version hashes for backwards compatibility
        List<Map<Integer, byte[]>> legacyHashes = new ArrayList<>(legacyStreamGraphHashers.size());
        for (StreamGraphHasher hasher : legacyStreamGraphHashers) {
            legacyHashes.add(hasher.traverseStreamGraphAndGenerateHashes(streamGraph));
        }
        setChaining(hashes, legacyHashes);
        setPhysicalEdges();
        setSlotSharingAndCoLocation();
        setManagedMemoryFraction(
                Collections.unmodifiableMap(jobVertices),
                Collections.unmodifiableMap(vertexConfigs),
                Collections.unmodifiableMap(chainedConfigs),
                id -> streamGraph.getStreamNode(id).getManagedMemoryOperatorScopeUseCaseWeights(),
                id -> streamGraph.getStreamNode(id).getManagedMemorySlotScopeUseCases());
        configureCheckpointing();
        jobGraph.setSavepointRestoreSettings(streamGraph.getSavepointRestoreSettings());
        final Map<String, DistributedCache.DistributedCacheEntry> distributedCacheEntries =
                JobGraphUtils.prepareUserArtifactEntries(
                        streamGraph.getUserArtifacts().stream()
                                .collect(Collectors.toMap(e -> e.f0, e -> e.f1)),
                        jobGraph.getJobID());
        for (Map.Entry<String, DistributedCache.DistributedCacheEntry> entry :
                distributedCacheEntries.entrySet()) {
            jobGraph.addUserArtifact(entry.getKey(), entry.getValue());
        }
        // set the ExecutionConfig last when it has been finalized
        try {
            jobGraph.setExecutionConfig(streamGraph.getExecutionConfig());
        } catch (IOException e) {
            throw new IllegalConfigurationException(
                    "Could not serialize the ExecutionConfig."
                            + "This indicates that non-serializable types (like custom serializers) were registered");
        }
        addVertexIndexPrefixInVertexName();
        setVertexDescription();
        return jobGraph;
    }

重点我们介绍以下几点

生成hash值

对每个streamNode生成一个hash值,用于来标识节点,用于重新提交任务后涉及恢复作业的场景。具体生成hash值的逻辑如下:

生成chain

如果连接的2个节点满足一定的条件,就会把这2个节点放到一个chain里面,这样可以避免上下游算子间发送数据的网络开销和序列化反序列化的性能开销。判断算子是否可以组成一个chain的判断逻辑如下:

    public static boolean isChainable(StreamEdge edge, StreamGraph streamGraph) {
        StreamNode downStreamVertex = streamGraph.getTargetVertex(edge);
        return downStreamVertex.getInEdges().size() == 1 && isChainableInput(edge, streamGraph);
    }
    private static boolean isChainableInput(StreamEdge edge, StreamGraph streamGraph) {
        StreamNode upStreamVertex = streamGraph.getSourceVertex(edge);
        StreamNode downStreamVertex = streamGraph.getTargetVertex(edge);
        if (!(upStreamVertex.isSameSlotSharingGroup(downStreamVertex)
                && areOperatorsChainable(upStreamVertex, downStreamVertex, streamGraph)
                && arePartitionerAndExchangeModeChainable(
                        edge.getPartitioner(),
                        edge.getExchangeMode(),
                        streamGraph.getExecutionConfig().isDynamicGraph())
                && upStreamVertex.getParallelism() == downStreamVertex.getParallelism()
                && streamGraph.isChainingEnabled())) {
            return false;
        }
        // check that we do not have a union operation, because unions currently only work
        // through the network/byte-channel stack.
        // we check that by testing that each "type" (which means input position) is used only once
        for (StreamEdge inEdge : downStreamVertex.getInEdges()) {
            if (inEdge != edge && inEdge.getTypeNumber() == edge.getTypeNumber()) {
                return false;
            }
        }
        return true;
    }

具体解读如下:

总结

本篇介绍了StreamGraph到JobGraph的生成流程,重点是在上下游节点是需要满足什么条件才能chain到一起的具体逻辑。

以上就是Flink JobGraph生成源码解析的详细内容,更多关于Flink JobGraph生成的资料请关注脚本之家其它相关文章!

您可能感兴趣的文章:
阅读全文