IOS

关注公众号 jb51net

关闭
首页 > 软件编程 > IOS > iOS底层Swift OC闭包

iOS底层实例解析Swift闭包及OC闭包

作者:Yakamoz

这篇文章主要为大家介绍了iOS底层实例解析Swift闭包及OC闭包,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪

基础

Block是⼀个自包含的(捕获了上下⽂的常量或者是变量的)函数代码块,可以在代码中被传递和使用。

全局和嵌套函数实际上也是特殊的闭包,闭包采用如下三种形式之一:

OC-Block

分类

NSGlobalBlock

NSMallocBlock

NSStackBlock

如下简单demo code所示

int a = 10; // 局部变量
void(^Global)(void) = ^{
    NSLog(@"Global");
};
void(^Malloc)(void) = ^{
    NSLog(@"Malloc,%d",a);
};
void(^__weak Stack)(void) = ^{
    NSLog(@"Stack,%d",a);
};
NSLog(@"%@",Global); // <__NSGlobalBlock__: 0x101aa80b0>
NSLog(@"%@",Malloc); // <__NSMallocBlock__: 0x600003187900>
NSLog(@"%@",Stack); // <__NSStackBlock__: 0x7ff7b12c22f0>

下面重点介绍堆Block。

NSMallocBlock

Block拷贝到堆Block的时机:

所以总结一下堆Block判断依据:

源码探究

我们创建一个捕获了局部变量的block

#import <Foundation/Foundation.h>
void test() {
    int a = 10;
    void(^Malloc)(void) = ^{
        NSLog(@"%d",a);
    };
}

执行clang -rewrite-objc main.m -o main.cpp命令,查看main.cpp文件可以看到Malloc闭包的结构如下。

struct __test_block_impl_0 {
  struct __block_impl impl;
  struct __test_block_desc_0* Desc;
	// 内部存储了变量a
  int a;
	/// 初始化函数。包含三个参数
	// - Parameters:
  ///   - fp: 函数指针
  ///   - desc: 描述
  ///   - _a: flag
  __test_block_impl_0(void *fp, struct __test_block_desc_0 *desc, int _a, int flags=0) : a(_a) {
    impl.isa = &_NSConcreteStackBlock;
    impl.Flags = flags;
    impl.FuncPtr = fp;
    Desc = desc;
  }
};
// 创建Malloc闭包,传入参数如下
// fp: (void *)__test_block_func_0
// desc: &__test_block_desc_0_DATA
// _a: 变量a的值(值拷贝)
void(*Malloc)(void) = ((void (*)())&__test_block_impl_0((void *)__test_block_func_0, &__test_block_desc_0_DATA, a));
// __test_block_func_0实现如下
static void __test_block_func_0(struct __test_block_impl_0 *__cself) {
  int a = __cself->a; // bound by copy
			NSLog(···);
    }

打开llvm可以看到,该block原本是在栈上,调用了objc_retainBlock方法,而在该方法中实际调用了_Block_copy方法。

在Block.h的源码中可以找到_Block_copy方法,其官方注释是“创建一个基于堆的Block副本,或者简单地添加一个对现有Block的引用。”,从而将这个栈block拷贝到了堆上,下面我们根据该方法的源码来探究一下堆Block的原理。(只截取重点代码)

void *_Block_copy(const void *arg) {
    return _Block_copy_internal(arg, true);
}
static void *_Block_copy_internal(const void *arg, const bool wantsOne) {
    struct Block_layout *aBlock;
		···
		// 类型强转为Block_layout
    aBlock = (struct Block_layout *)arg;
		···
    // Its a stack block.  Make a copy.
		// 分配内存
		struct Block_layout *result = malloc(aBlock->descriptor->size);
		if (!result) return NULL;
		memmove(result, aBlock, aBlock->descriptor->size); // bitcopy first
		// reset refcount
		result->flags &= ~(BLOCK_REFCOUNT_MASK|BLOCK_DEALLOCATING);    // XXX not needed
		result->flags |= BLOCK_NEEDS_FREE | 2;  // logical refcount 1
		// isa重新标记为Malloc Block
		result->isa = _NSConcreteMallocBlock;
		_Block_call_copy_helper(result, aBlock);
		return result;
}

Block底层结构为Block_layout

struct Block_layout {
    void *isa;  // isa指针
    volatile int32_t flags; // contains ref count
    int32_t reserved; // 保留位
    void (*invoke)(void *, ...); // call out funtion
    struct Block_descriptor_1 *descriptor;
};

总结:

Block在运行时才会被copy,在堆上开辟内存空间。

循环引用

解决方案

__weak + __strong

思路: 在block里短暂持有self的生命周期。(weak 自动置空)

self.name = @"YK";
__weak typeof(self) weakSelf = self;
self.block = ^{
    __strong typeof(self) strongSelf = weakSelf;
    strongSelf.callFunc();
};

__block

思路: 值拷贝。(手动置空)

我们有如下代码,生成cpp文件看一下

#import <Foundation/Foundation.h>
void test() {
    __block int a = 10;
    void(^Malloc)(void) = ^{
        a++;
        NSLog(@"%d",a);
    };
    Malloc();
}
// 可以看到传入的第三个参数,是__Block_byref_a_0结构体类型的a变量地址,而不是上面讲过的直接存储int类型
void(*Malloc)(void) =
((void (*)())&__test_block_impl_0((void *)__test_block_func_0,
                                  &__test_block_desc_0_DATA,
                                  (__Block_byref_a_0 *)&a,
                                  570425344));
// __test_block_impl_0结构体中存储的变量也是__Block_byref_a_0类型
struct __test_block_impl_0 {
  struct __block_impl impl;
  struct __test_block_desc_0* Desc;
  __Block_byref_a_0 *a; // by ref
  __test_block_impl_0(void *fp, struct __test_block_desc_0 *desc, __Block_byref_a_0 *_a, int flags=0) : a(_a->__forwarding) {
    impl.isa = &_NSConcreteStackBlock;
    impl.Flags = flags;
    impl.FuncPtr = fp;
    Desc = desc;
  }
};
// 初始化__Block_byref_a_0如下
__attribute__((__blocks__(byref))) __Block_byref_a_0 a =
{(void*)0,
        (__Block_byref_a_0 *)&a,
        0,
        sizeof(__Block_byref_a_0),
        10};
// __Block_byref_a_0结构体
struct __Block_byref_a_0 {
  void *__isa;
__Block_byref_a_0 *__forwarding; // 指针指向原始值
 int __flags;
 int __size;
 int a; // 值拷贝存储
};

总结 __block 原理

注意点

根据上述分析我们可以得出结论,如果在OC的block中捕获了没有加__block 的外部变量,在编译时就会将变量值传入(值拷贝),如果捕获了加__block 的外部变量,则会获取到变量指针对应的内存空间的地址。代码验证如下

int a = 1;
__block int b = 2;
void(^Malloc)(void) = ^{
    NSLog(@"a,%d",a);
    NSLog(@"b,%d",b);
};
a = 3;
b = 4;
Malloc();
// 输出结果如下
// a,1
// b,4

Swift-Closure

// 未调用swift_allocObject
let closure1 = { () -> () in
    print("closure1")
}
// 调用swift_allocObject
let a = 10
let closure2 = { () -> () in
    print("closure2 \(a)")
}

捕获值

简单验证如下:

var variable = 10
let closure = { () -> () in
    variable += 1
    print("closure \(variable)")
}
closure() // closure 11
print(variable) // 11

可见直接获取变量的话,会修改到原始值。

如果改成下面这样会编译报错”可变运算符的左侧不可变”

var variable = 10
let closure = { [variable] () -> () in
    variable += 1
    print("closure \(variable)")
}
closure()
print(variable)

捕获指针类型验证

class YKClass {
    var name = "old"
}
let demoS = YKStruct()
let demoC = YKClass()
let closure1 = { [demoC] () -> () in
    demoC.name = "new"
    print("closure1 \(demoC.name)")
}
closure1() // closure1 new
print(demoC.name) // new
let closure2 = { () -> () in
    demoC.name = "new2"
    print("closure2 \(demoC.name)")
}
closure2() // closure2 new2
print(demoC.name) // new2

以上就是iOS底层实例解析Swift闭包及OC闭包的详细内容,更多关于iOS底层Swift OC闭包的资料请关注脚本之家其它相关文章!

您可能感兴趣的文章:
阅读全文