java

关注公众号 jb51net

关闭
首页 > 软件编程 > java > Java8新特性 StreamAPI

Java8新特性 StreamAPI实例详解

作者:我一定有办法

这篇文章主要为大家介绍了Java8新特性 StreamAPI实例详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪

Stream结果收集

面试官:说说你常用的StreamAPI。

结果收集到集合中

    public static void main(String[] args){
        // Stream<String> stream = Stream.of("aa", "bb", "cc");
        List<String> list = Stream.of("aa", "bb", "cc","aa")
                .collect(Collectors.toList());
        System.out.println(list);
        // 收集到 Set集合中
        Set<String> set = Stream.of("aa", "bb", "cc", "aa")
                .collect(Collectors.toSet());
        System.out.println(set);
        // 如果需要获取的类型为具体的实现,比如:ArrayList HashSet
        ArrayList<String> arrayList = Stream.of("aa", "bb", "cc", "aa")
                //.collect(Collectors.toCollection(() -> new ArrayList<>()));
                .collect(Collectors.toCollection(ArrayList::new));
        System.out.println(arrayList);
        HashSet<String> hashSet = Stream.of("aa", "bb", "cc", "aa")
                .collect(Collectors.toCollection(HashSet::new));
        System.out.println(hashSet);
    }

输出:

[aa, bb, cc, aa]
[aa, bb, cc]
[aa, bb, cc, aa]
[aa, bb, cc]

结果收集到数组中

Stream中提供了toArray方法来将结果放到一个数组中,返回值类型是Object[],如果我们要指定返回的类型,那么可以使用另一个重载的toArray(IntFunction f)方法。

    public static void main(String[] args){
        Object[] objects = Stream.of("aa", "bb", "cc", "aa")
                .toArray(); // 返回的数组中的元素是 Object类型
        System.out.println(Arrays.toString(objects));
        // 如果我们需要指定返回的数组中的元素类型
        String[] strings = Stream.of("aa", "bb", "cc", "aa")
                .toArray(String[]::new);
        System.out.println(Arrays.toString(strings));
    }

对流中的数据做聚合计算

当我们使用Stream流处理数据后,可以像数据库的聚合函数一样对某个字段进行操作,比如获得最大值,最小值,求和,平均值,统计数量。

    public static void main(String[] args) {
        // 获取年龄的最大值
        Optional<Person> maxAge = Stream.of(
                new Person("张三", 18)
                , new Person("李四", 22)
                , new Person("张三", 13)
                , new Person("王五", 15)
                , new Person("张三", 19)
        ).collect(Collectors.maxBy((p1, p2) -> p1.getAge() - p2.getAge()));
        System.out.println("最大年龄:" + maxAge.get());
        // 获取年龄的最小值
        Optional<Person> minAge = Stream.of(
                new Person("张三", 18)
                , new Person("李四", 22)
                , new Person("张三", 13)
                , new Person("王五", 15)
                , new Person("张三", 19)
        ).collect(Collectors.minBy((p1, p2) -> p1.getAge() - p2.getAge()));
        System.out.println("最新年龄:" + minAge.get());
        // 求所有人的年龄之和
        Integer sumAge = Stream.of(
                new Person("张三", 18)
                , new Person("李四", 22)
                , new Person("张三", 13)
                , new Person("王五", 15)
                , new Person("张三", 19)
        )
                //.collect(Collectors.summingInt(s -> s.getAge()))
                .collect(Collectors.summingInt(Person::getAge))
                ;
        System.out.println("年龄总和:" + sumAge);
        // 年龄的平均值
        Double avgAge = Stream.of(
                new Person("张三", 18)
                , new Person("李四", 22)
                , new Person("张三", 13)
                , new Person("王五", 15)
                , new Person("张三", 19)
        ).collect(Collectors.averagingInt(Person::getAge));
        System.out.println("年龄的平均值:" + avgAge);
        // 统计数量
        Long count = Stream.of(
                new Person("张三", 18)
                , new Person("李四", 22)
                , new Person("张三", 13)
                , new Person("王五", 15)
                , new Person("张三", 19)
        ).filter(p->p.getAge() > 18)
                .collect(Collectors.counting());
        System.out.println("满足条件的记录数:" + count);
    }

对流中数据做分组操作

当我们使用Stream流处理数据后,可以根据某个属性将数据分组。

    public static void main(String[] args){
        // 根据账号对数据进行分组
        Map<String, List<Person>> map1 = Stream.of(
                new Person("张三", 18, 175)
                , new Person("李四", 22, 177)
                , new Person("张三", 14, 165)
                , new Person("李四", 15, 166)
                , new Person("张三", 19, 182)
        ).collect(Collectors.groupingBy(Person::getName));
        map1.forEach((k,v)-> System.out.println("k=" + k +"\t"+ "v=" + v));
        System.out.println("-----------");
        // 根据年龄分组 如果大于等于18 成年否则未成年
        Map<String, List<Person>> map2 = Stream.of(
                new Person("张三", 18, 175)
                , new Person("李四", 22, 177)
                , new Person("张三", 14, 165)
                , new Person("李四", 15, 166)
                , new Person("张三", 19, 182)
        ).collect(Collectors.groupingBy(p -> p.getAge() >= 18 ? "成年" : "未成年"));
        map2.forEach((k,v)-> System.out.println("k=" + k +"\t"+ "v=" + v));
    }

输出结果:

k=李四    v=[Person{name='李四', age=22, height=177}, Person{name='李四', age=15, height=166}]
k=张三    v=[Person{name='张三', age=18, height=175}, Person{name='张三', age=14, height=165}, Person{name='张三', age=19, height=182}]
-----------
k=未成年    v=[Person{name='张三', age=14, height=165}, Person{name='李四', age=15, height=166}]
k=成年    v=[Person{name='张三', age=18, height=175}, Person{name='李四', age=22, height=177}, Person{name='张三', age=19, height=182}]

多级分组: 先根据name分组然后根据年龄分组。

    public static void main(String[] args){
        // 先根据name分组,然后根据age(成年和未成年)分组
        Map<String,Map<Object,List<Person>>> map =  Stream.of(
                new Person("张三", 18, 175)
                , new Person("李四", 22, 177)
                , new Person("张三", 14, 165)
                , new Person("李四", 15, 166)
                , new Person("张三", 19, 182)
        ).collect(Collectors.groupingBy(
                Person::getName
                ,Collectors.groupingBy(p->p.getAge()>=18?"成年":"未成年"
                )
        ));
        map.forEach((k,v)->{
            System.out.println(k);
            v.forEach((k1,v1)->{
                System.out.println("\t"+k1 + "=" + v1);
            });
        });
    }

输出结果:

李四
    未成年=[Person{name='李四', age=15, height=166}]
    成年=[Person{name='李四', age=22, height=177}]
张三
    未成年=[Person{name='张三', age=14, height=165}]
    成年=[Person{name='张三', age=18, height=175}, Person{name='张三', age=19, height=182}]

对流中的数据做分区操作

Collectors.partitioningBy会根据值是否为true,把集合中的数据分割为两个列表,一个true列表,一个false列表。

    public static void main(String[] args){
        Map<Boolean, List<Person>> map = Stream.of(
                new Person("张三", 18, 175)
                , new Person("李四", 22, 177)
                , new Person("张三", 14, 165)
                , new Person("李四", 15, 166)
                , new Person("张三", 19, 182)
        ).collect(Collectors.partitioningBy(p -> p.getAge() > 18));
        map.forEach((k,v)-> System.out.println(k+"\t" + v));
    }

输出结果:

false    [Person{name='张三', age=18, height=175}, Person{name='张三', age=14, height=165}, Person{name='李四', age=15, height=166}]
true    [Person{name='李四', age=22, height=177}, Person{name='张三', age=19, height=182}]

对流中的数据做拼接

Collectors.joining会根据指定的连接符,将所有的元素连接成一个字符串。

    public static void main(String[] args){
        String s1 = Stream.of(
                new Person("张三", 18, 175)
                , new Person("李四", 22, 177)
                , new Person("张三", 14, 165)
                , new Person("李四", 15, 166)
                , new Person("张三", 19, 182)
        ).map(Person::getName)
                .collect(Collectors.joining());
        // 张三李四张三李四张三
        System.out.println(s1);
        String s2 = Stream.of(
                new Person("张三", 18, 175)
                , new Person("李四", 22, 177)
                , new Person("张三", 14, 165)
                , new Person("李四", 15, 166)
                , new Person("张三", 19, 182)
        ).map(Person::getName)
                .collect(Collectors.joining("_"));
        // 张三_李四_张三_李四_张三
        System.out.println(s2);
        String s3 = Stream.of(
                new Person("张三", 18, 175)
                , new Person("李四", 22, 177)
                , new Person("张三", 14, 165)
                , new Person("李四", 15, 166)
                , new Person("张三", 19, 182)
        ).map(Person::getName)
                .collect(Collectors.joining("_", "###", "$$$"));
        // ###张三_李四_张三_李四_张三$$$
        System.out.println(s3);
    }

并行的Stream流

串行的Stream流

我们前面使用的Stream流都是串行,也就是在一个线程上面执行。

并行流

parallelStream其实就是一个并行执行的流,它通过默认的ForkJoinPool,可以提高多线程任务的速度。

获取并行流

我们可以通过两种方式来获取并行流。

    public static void main(String[] args){
        List<Integer> list = new ArrayList<>();
        // 通过List 接口 直接获取并行流
        Stream<Integer> integerStream = list.parallelStream();
        // 将已有的串行流转换为并行流
        Stream<Integer> parallel = Stream.of(1, 2, 3).parallel();
    }

并行流操作

    public static void main(String[] args){
        Stream.of(1,4,2,6,1,5,9)
                .parallel() // 将流转换为并发流,Stream处理的时候就会通过多线程处理
                .filter(s->{
                    System.out.println(Thread.currentThread() + " s=" +s);
                    return s > 2;
                }).count();
    }

并行流和串行流对比

我们通过for循环,串行Stream流,并行Stream流来对500000000亿个数字求和。来看消耗时间。

public class Test {
    private static long times = 500000000;
    private  long start;
    @Before
    public void befor(){
        start = System.currentTimeMillis();
    }
    @After
    public void end(){
        long end = System.currentTimeMillis();
        System.out.println("消耗时间:" + (end - start));
    }
    /**
     * 普通for循环 消耗时间:138
     */
    @Test
    public void test01(){
        System.out.println("普通for循环:");
        long res = 0;
        for (int i = 0; i < times; i++) {
            res += i;
        }
    }
    /**
     * 串行流处理
     *   消耗时间:203
     */
    @Test
    public void test02(){
        System.out.println("串行流:serialStream");
        LongStream.rangeClosed(0,times)
                .reduce(0,Long::sum);
    }
    /**
     * 并行流处理 消耗时间:84
     */
    @Test
    public void test03(){
        LongStream.rangeClosed(0,times)
                .parallel()
                .reduce(0,Long::sum);
    }
}

通过案例我们可以看到parallelStream的效率是最高的。

Stream并行处理的过程会分而治之,也就是将一个大的任务切分成了多个小任务,这表示每个任务都是一个线程操作。

线程安全问题

在多线程的处理下,肯定会出现数据安全问题。如下:

    @Test
    public void test(){
        List<Integer> list = new ArrayList<>();
        for (int i = 0; i < 1000; i++) {
            list.add(i);
        }
        System.out.println(list.size());
        List<Integer> listNew = new ArrayList<>();
        // 使用并行流来向集合中添加数据
        list.parallelStream()
                //.forEach(s->listNew.add(s));
                .forEach(listNew::add);
        System.out.println(listNew.size());// 839
    }

针对这个问题,我们的解决方案有哪些呢?

以上就是Java8新特性 StreamAPI实例详解的详细内容,更多关于Java8新特性 StreamAPI的资料请关注脚本之家其它相关文章!

您可能感兴趣的文章:
阅读全文