Golang

关注公众号 jb51net

关闭
首页 > 脚本专栏 > Golang > go HTTP2 头部压缩算法hpack

go HTTP2 的头部压缩算法hpack实现详解

作者:Duslia

这篇文章主要为大家介绍了go HTTP2 的头部压缩算法hpack实现详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪

Hpack 是啥

Hpack 是 HTTP2 的头部压缩算法。在 HTTP1 中,每次传输都会有大量的 Header 携带,我们可以拿一个实际的请求来看,如图一:

图一:请求 header

这里面 Header 很多是请求共性的,比如 method: POST,就是 post 请求的 header,那每个 POST 请求都会携带这个 header;以及同一个页面里可能有很多请求需要带上相同 header,比如 user-agent、鉴权相关 header 等等。那如果 body 很小的话,每次传输利用率就很低了。HTTP2 为了提高传输效率设计了 HPACK 头部压缩算法。

HPACK 原理

HPACK 维护了两张表,静态表和动态表。如果 Header key、value 在表里的话,直接将 Header kv 用 index 编码即可;如果不存在表中的话,则采用 Huffman 编码或者不编码发送。每条连接维护各自的动态表,request 和 response 的动态表是分开的。

静态表存储常见的 Header kv,比如 :method: GET、:method: POST、:schema: http 等一共 61 项,具体的项可以参考 RFC 7541 文档

动态表是一个先进先出的表,先进入的在高索引空间,后进入的在低索引空间(索引空间从0到最后递减)。header 根据一定的规则判断是否加入动态表,有三种规则:

动态表也有一定大小,通过 SETTINGS_HEADER_TABLE_SIZE 来设置。如果新的 Header kv size 超过了这个值,就会逐出动态表,直到能够放下这个 Header kv 或者将所有的逐出。特别的,如果一个 Header kv size 大于了动态表的最大值,那么这个 Header 的作用就是清空动态表。

如何编码

  0   1   2   3   4   5   6   7
+---+---+---+---+---+---+---+---+
| 1 |        Index (7+)         |
+---+---------------------------+
 0   1   2   3   4   5   6   7
+---+---+---+---+---+---+---+---+
| 0 | 1 |      Index (6+)       |
+---+---+-----------------------+
| H |     Value Length (7+)     |
+---+---------------------------+
| Value String (Length octets)  |
+-------------------------------+

01 后的 index 表示 Header Key 的索引

这个 Header 会被加在 server 和 client 的动态表中。

 0   1   2   3   4   5   6   7
+---+---+---+---+---+---+---+---+
| 0 | 0 | 0 | 0 |  Index (4+)   |
+---+---+-----------------------+
| H |     Value Length (7+)     |
+---+---------------------------+
| Value String (Length octets)  |
+-------------------------------+
  0   1   2   3   4   5   6   7
+---+---+---+---+---+---+---+---+
| 0 | 1 |           0           |
+---+---+-----------------------+
| H |     Name Length (7+)      |
+---+---------------------------+
|  Name String (Length octets)  |
+---+---------------------------+
| H |     Value Length (7+)     |
+---+---------------------------+
| Value String (Length octets)  |
+-------------------------------+
    0   1   2   3   4   5   6   7
+---+---+---+---+---+---+---+---+
| 0 | 0 | 0 | 0 |       0       |
+---+---+-----------------------+
| H |     Name Length (7+)      |
+---+---------------------------+
|  Name String (Length octets)  |
+---+---------------------------+
| H |     Value Length (7+)     |
+---+---------------------------+
| Value String (Length octets)  |
+-------------------------------+
0   1   2   3   4   5   6   7
+---+---+---+---+---+---+---+---+
| 0 | 0 | 0 | 1 |  Index (4+)   |
+---+---+-----------------------+
| H |     Value Length (7+)     |
+---+---------------------------+
| Value String (Length octets)  |
+-------------------------------+
 0   1   2   3   4   5   6   7
+---+---+---+---+---+---+---+---+
| 0 | 0 | 0 | 1 |       0       |
+---+---+-----------------------+
| H |     Name Length (7+)      |
+---+---------------------------+
|  Name String (Length octets)  |
+---+---------------------------+
| H |     Value Length (7+)     |
+---+---------------------------+
| Value String (Length octets)  |
+-------------------------------+

举个编码🌰

:method: GET
:scheme: http
:path: /
:authority: www.example.com

编码后的 16 进制如下

8286 8441 8cf1 e3c2 e5f2 3a6b a0ab 90f4 ff

82 = 10000010 -> 8 表示 kv 均被索引,表项为静态表第 2 项-> :method: GET

86 = 10000110 -> 8 表示 kv 均被索引,表项为静态表第 6 项-> :scheme: http

84 = 10000100 -> 8 表示 kv 均被索引,表项为静态表第 4 项 -> :path: /

41 = 01000001 -> 4 表示 Key 被索引,value 未索引且允许保存,name 为静态表第1项,即 :authority。接下来表示这个 header对应的 value。

8c = 10001100 -> 第一个 bit 为1,表示 huffman 编码,字符串的长度为 1100b = 12。接着解析12个字节为 huffman 编码后的字符 f1e3 c2e5 f23a 6ba0 ab90 f4ff, 解码为www.example.com

所以得到最后一个头部 :authority: www.example.com

HPACK 实现

我们可以先想一下,如果要做到索引的复杂度尽可能小,同时又要有序方便逐出,那应该采用什么数据结构呢?

那应该很容易想到,我们需要用一个 slice 存下来所有的数据,也方便逐出;如果一个 Header 来了,我们也需要两个 map 存下这个这个 Header 对应的在 slice 中的 index。

Golang 中 HPACK 的实现在 hpack 文件夹中,动态表的数据结构和我们想的一样。

动态表的实现在 tables.go 当中

 type headerFieldTable struct {
        // 用 slice 存储具体的表项,同时也方便逐出
        ents       []HeaderField
        // 逐出数量,可以理解为偏移修正量。如果一个 header 被逐出后,那其他 header 的
        // 索引就会升高。在 map 中修改需要 O(n) 的开销,所以计算 id 时在这里统一加
        // 一个修正量即可。
        evictCount uint64
        // 只根据 header 找对应的 id。
        byName map[string]uint64
        // 根据 header kv 找对应的 id。
        byNameValue map[pairNameValue]uint64
}
type pairNameValue struct {
        name, value string
}
func (t *headerFieldTable) addEntry(f HeaderField) {
        // 计算唯一 id,同时保证不和已经在表中的 id 重复
        id := uint64(t.len()) + t.evictCount + 1
        // 在两个 map 中存下索引
        t.byName[f.Name] = id
        t.byNameValue[pairNameValue{f.Name, f.Value}] = id
        // 保存索引
        t.ents = append(t.ents, f) 
}
// 逐出 n 个
func (t *headerFieldTable) evictOldest(n int) {
        ...
        for k := 0; k < n; k++ {
                f := t.ents[k]
                // 根据 index 算出在 map 中的 id
                id := t.evictCount + uint64(k) + 1
                // 双重校验,如果校验通过就删除表项
                if t.byName[f.Name] == id {
                        delete(t.byName, f.Name)
                }
                if p := (pairNameValue{f.Name, f.Value}); t.byNameValue[p] == id {
                        delete(t.byNameValue, p)
                }
        }
        // 用后 n 个表项覆盖前面的表项实现逐出
        copy(t.ents, t.ents[n:])
        for k := t.len() - n; k < t.len(); k++ {
                t.ents[k] = HeaderField{} // so strings can be garbage collected
        }
        t.ents = t.ents[:t.len()-n]
        // 逐出数量 +n
        // 表项迁移带来的索引减小会通过 evictCount 的增加补回来,所以 id 并不会变
        t.evictCount += uint64(n)
}
// 在表项中寻找,如果没有匹配的 i 就是 0.如果 kv 都匹配上了就返回 index, true;
// 如果只有 k 匹配上了就返回 index, false。
func (t *headerFieldTable) search(f HeaderField) (i uint64, nameValueMatch bool) {
        if !f.Sensitive {
                if id := t.byNameValue[pairNameValue{f.Name, f.Value}]; id != 0 {
                        return t.idToIndex(id), true
                }
        }
        if id := t.byName[f.Name]; id != 0 {
                return t.idToIndex(id), false
        }
        return 0, false
}
func (t *headerFieldTable) idToIndex(id uint64) uint64 {
        // 校验。不在这里 panic,下面根据 index 索引的时候,slice 也会 panic
        if id <= t.evictCount {
                panic(fmt.Sprintf("id (%v) <= evictCount (%v)", id, t.evictCount))
        }
        // 将 id 转换为 slice 中的 index
        k := id - t.evictCount - 1 // convert id to an index t.ents[k]
        // 如果是动态表,需要减去静态表的长度
        if t != staticTable {
                return uint64(t.len()) - k // dynamic table
        }
        return k + 1
}

其他部分的实现就很简单了,基本上就是照着上面的流程写就可以了。其中有一个解析当前 header 是哪种类型的实现还挺有意思的。

func (d *Decoder) parseHeaderFieldRepr() error {
        b := d.buf[0]
        switch {
        case b&128 != 0:
                // 128 => 10000000
                // 设置了最高位,对应上面的第 1 种 kv 均在的情况
                // https://httpwg.org/specs/rfc7541.html#rfc.section.6.1
                return d.parseFieldIndexed()
        case b&192 == 64:
                // 192 => 11000000
                // 对应前三位为 010 的情况,即允许保存的情况
                // https://httpwg.org/specs/rfc7541.html#rfc.section.6.2.1
                return d.parseFieldLiteral(6, indexedTrue)
        case b&240 == 0:
                // 240 => 11110000
                // 对应前四位都是0的情况,即不允许保存的情况
                // https://httpwg.org/specs/rfc7541.html#rfc.section.6.2.2
                return d.parseFieldLiteral(4, indexedFalse)
        case b&240 == 16:
                // 240 => 11110000
                // 对应前四位是0001的情况,即绝对不允许保存的情况
                // https://httpwg.org/specs/rfc7541.html#rfc.section.6.2.3
                return d.parseFieldLiteral(4, indexedNever)
        case b&224 == 32:
                // 224 => 11100000
                // 对应前三位是001的情况,即动态表大小更新的情况
                // https://httpwg.org/specs/rfc7541.html#rfc.section.6.3
                return d.parseDynamicTableSizeUpdate()
        }
        return DecodingError{errors.New("invalid encoding")}
}

遇到的坑

写这篇文章是因为 hertz 在接入 h3 的时候会偶发的 panic,原因是在动态表存表项的时候,存入了一个 unsafe string,后面这一项给变了,导致双重校验的时候没有删掉,从而引发了 panic。

参考文档

www.rfc-editor.org/rfc/rfc7541

以上就是go HTTP2 的头部压缩算法hpack实现详解的详细内容,更多关于go HTTP2 头部压缩算法hpack的资料请关注脚本之家其它相关文章!

您可能感兴趣的文章:
阅读全文