python

关注公众号 jb51net

关闭
首页 > 脚本专栏 > python > python Multiprocessing.Pool

python Multiprocessing.Pool进程池模块详解

作者:Python热爱者

multiprocessing模块提供了一个Process类来代表一个进程对象,multiprocessing模块像线程一样管理进程,这个是multiprocessing的核心,它与threading很相似,对多核CPU的利用率会比threading好的多

前言

Multiprocessing.Pool可以提供指定数量的进程供用户调用,当有新的请求提交到pool中时,如果池还没有满,那么就会创建一个新的进程用来执行该请求;

但如果池中的进程数已经达到规定最大值,那么该请求就会等待,直到池中有进程结束,才会创建新的进程来执行它。

Pool类用于需要执行的目标很多,而手动限制进程数量又太繁琐时,如果目标少且不用控制进程数量则可以用Process类。

class multiprocessing.pool.Pool([processes[, initializer[, initargs[, maxtasksperchild[, context]]]]])

实例方法

(1)apply(func [,args [,kwds ] ] )

使用参数args和关键字参数kwds调用func。它会阻塞,直到结果准备就绪。鉴于此块,更适合并行执行工作。此外,func 仅在池中的一个工作程序中执行。

from multiprocessing import Pool
import time
def test(p):
       print(p)
       time.sleep(3)
if __name__=="__main__":
    pool = Pool(processes=10)
    for i  in range(500):
        '''
        ('\n'
         '    (1)遍历500个可迭代对象,往进程池放一个子进程\n'
         '    (2)执行这个子进程,等子进程执行完毕,再往进程池放一个子进程,再执行。(同时只执行一个子进程)\n'
         '     for循环执行完毕,再执行print函数。\n'
         '    ')
        '''
        pool.apply(test, args=(i,))   #维持执行的进程总数为10,当一个进程执行完后启动一个新进程.
    print('test')
    pool.close()
    pool.join()
'''
1
2
3
4
5
6
7
8
Process finished with exit code -1
'''

for循环内执行的步骤顺序,往进程池中添加一个子进程,执行子进程,等待执行完毕再添加一个子进程……等500个子进程都执行完了,再执行print。(从结果来看,并没有多进程并发)

(2)apply_async(func [,args [,kwds [,callback [,error_callback ] ] ] ] )

异步进程池(非阻塞),返回结果对象的方法的变体。如果指定了回调,则它应该是可调用的,它接受单个参数。当结果变为就绪时,将对其应用回调,即除非调用失败,在这种情况下将应用error_callback。如果指定了error_callback,那么它应该是一个可调用的,它接受一个参数。如果目标函数失败,则使用异常实例调用error_callback。回调应立即完成,否则处理结果的线程将被阻止。

from multiprocessing import Pool
import time
def test(p):
       print(p)
       time.sleep(3)
if __name__=="__main__":
    pool = Pool(processes=2)
    for i  in range(500):
        '''
         (1)循环遍历,将500个子进程添加到进程池(相对父进程会阻塞)\n'
         (2)每次执行2个子进程,等一个子进程执行完后,立马启动新的子进程。(相对父进程不阻塞)\n'
        '''
        pool.apply_async(test, args=(i,))   #维持执行的进程总数为10,当一个进程执行完后启动一个新进程.
    print('test')
    pool.close()
    pool.join()
'''
test
0
1
2
3
4
5
6
7
Process finished with exit code -1
'''

调用join之前,先调用close或者terminate方法,否则会出错。执行完close后不会有新的进程加入到pool,join函数等待所有子进程结束。

(3)map(func,iterable [,chunksize ] )

map()内置函数的并行等价物(尽管它只支持一个可迭代的参数)。它会阻塞,直到结果准备就绪。此方法将iterable内的每一个对象作为单独的任务提交给进程池。可以通过将chunksize设置为正整数来指定这些块的(近似)大小。

from multiprocessing import Pool
def test(i):
    print(i)
if  __name__ == "__main__":
    lists = [1, 2, 3]
    pool = Pool(processes=2)       #定义最大的进程数
    pool.map(test, lists)          #p必须是一个可迭代变量。
    pool.close()
    pool.join()
'''
1
2
3
'''

(4)map_async(func,iterable [,chunksize [,callback [,error_callback ] ] ] )

map()返回结果对象的方法的变体。需要传入可迭代对象iterable

from multiprocessing import Pool
import time
def test(p):
       print(p)
       time.sleep(3)
if __name__=="__main__":
    pool = Pool(processes=2)
    # for i  in range(500):
    #     '''
    #      (1)循环遍历,将500个子进程添加到进程池(相对父进程会阻塞)\n'
    #      (2)每次执行2个子进程,等一个子进程执行完后,立马启动新的子进程。(相对父进程不阻塞)\n'
    #     '''
    #     pool.apply_async(test, args=(i,))   #维持执行的进程总数为10,当一个进程执行完后启动一个新进程.
    pool.map_async(test, range(500))
    print('test')
    pool.close()
    pool.join()
'''
test
0
63
1
64
2
65
3
66
Process finished with exit code -1
'''

(5)imap(func,iterable [,chunksize ] )

返回迭代器,next()调用返回的迭代器的方法得到结果,imap()方法有一个可选的超时参数: next(timeout)将提高multiprocessing.TimeoutError如果结果不能内退回超时秒。

(6)close()

防止任何更多的任务被提交到池中。 一旦完成所有任务,工作进程将退出。

(7)terminate()

立即停止工作进程而不完成未完成的工作。当池对象被垃圾收集时,terminate()将立即调用。

(8)join()

等待工作进程退出。必须打电话close()或 terminate()使用之前join()。

from multiprocessing import Pool
import time
def f(x):
    return x*x
if __name__ == '__main__':
    with Pool(processes=4) as pool:         # start 4 worker processes
        result = pool.apply_async(f, (10,)) # evaluate "f(10)" asynchronously in a single process
        print(result.get(timeout=1))        # prints "100" unless your computer is *very* slow
        print(pool.map(f, range(10)))       # prints "[0, 1, 4,..., 81]"
        it = pool.imap(f, range(10))
        print(next(it))                     # prints "0"
        print(next(it))                     # prints "1"
        print(it.next(timeout=1))           # prints "4" unless your computer is *very* slow
        result = pool.apply_async(time.sleep, (10,))
        print(result.get(timeout=1))        # raises multiprocessing.TimeoutError
'''
100
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
0
1
4
Traceback (most recent call last):
  File "C:/Users/BruceWong/Desktop/develop/multiprocessingpool.py", line 19, in <module>
    print(next(res))
TypeError: 'MapResult' object is not an iterator
Process finished with exit code 1

到此这篇关于python Multiprocessing.Pool进程池模块详解的文章就介绍到这了,更多相关python Multiprocessing.Pool内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

您可能感兴趣的文章:
阅读全文