Python Pandas 修改表格数据类型 DataFrame 列的顺序案例
作者:菜鸟实战
一、修改表格数据类型 DataFrame 列的顺序
实战场景:Pandas 如何修改表格数据类型 DataFrame 列的顺序
1.1主要知识点
- 文件读写
- 基础语法
- 数据构建
- Pandas
- Numpy
实战:
1.2创建 python 文件
import numpy as np import pandas as pd np.random.seed(66) df = pd.DataFrame(np.random.rand(10, 4), columns=list('ABCD')) print(df) df = df[["D", "A", "B", "C"]] print(df)
1.3运行结果
A B C D
0 0.154288 0.133700 0.362685 0.679109
1 0.194450 0.251210 0.758416 0.557619
2 0.514803 0.467800 0.087176 0.829095
3 0.298641 0.031346 0.678006 0.903489
4 0.514451 0.539105 0.664328 0.634057
5 0.353419 0.026643 0.165290 0.879319
6 0.067820 0.369086 0.115501 0.096294
7 0.083770 0.086927 0.022256 0.771043
8 0.049213 0.465223 0.941233 0.216512
9 0.361318 0.031319 0.304045 0.188268
D A B C
0 0.679109 0.154288 0.133700 0.362685
1 0.557619 0.194450 0.251210 0.758416
2 0.829095 0.514803 0.467800 0.087176
3 0.903489 0.298641 0.031346 0.678006
4 0.634057 0.514451 0.539105 0.664328
5 0.879319 0.353419 0.026643 0.165290
6 0.096294 0.067820 0.369086 0.115501
7 0.771043 0.083770 0.086927 0.022256
8 0.216512 0.049213 0.465223 0.941233
9 0.188268 0.361318 0.031319 0.304045
二、Pandas 如何统计某个数据列的空值个数
实战场景:Pandas 如何统计某个数据列的空值个数
2.1主要知识点
- 文件读写
- 基础语法
- Pandas
- numpy
实战:
2.2创建 python 文件
""" 对如下DF,设置两个单元格的值 ·使用iloc 设置(3,B)的值是nan ·使用loc设置(8,D)的值是nan """ import numpy as np import pandas as pd np.random.seed(66) df = pd.DataFrame(np.random.rand(10, 4), columns=list('ABCD')) df.iloc[3, 1] = np.nan df.loc[8, 'D'] = np.nan print(df) print(df.isnull().sum())
2.3运行结果
A B C D
0 0.154288 0.133700 0.362685 0.679109
1 0.194450 0.251210 0.758416 0.557619
2 0.514803 0.467800 0.087176 0.829095
3 0.298641 NaN 0.678006 0.903489
4 0.514451 0.539105 0.664328 0.634057
5 0.353419 0.026643 0.165290 0.879319
6 0.067820 0.369086 0.115501 0.096294
7 0.083770 0.086927 0.022256 0.771043
8 0.049213 0.465223 0.941233 NaN
9 0.361318 0.031319 0.304045 0.188268
A 0
B 1
C 0
D 1
dtype: int64
三、Pandas如何移除包含空值的行
实战场景:Pandas如何移除包含空值的行
3.1主要知识点
- 文件读写
- 基础语法
- Pandas
- numpy
实战:
3.2创建 python 文件
""" 对如下DF,设置两个单元格的值 ·使用iloc 设置(3,B)的值是nan ·使用loc设置(8,D)的值是nan """ import numpy as np import pandas as pd np.random.seed(66) df = pd.DataFrame(np.random.rand(10, 4), columns=list('ABCD')) df.iloc[3, 1] = np.nan df.loc[8, 'D'] = np.nan print(df) df2 = df.dropna() print(df2)
3.3运行结果
A B C D
0 0.154288 0.133700 0.362685 0.679109
1 0.194450 0.251210 0.758416 0.557619
2 0.514803 0.467800 0.087176 0.829095
3 0.298641 NaN 0.678006 0.903489
4 0.514451 0.539105 0.664328 0.634057
5 0.353419 0.026643 0.165290 0.879319
6 0.067820 0.369086 0.115501 0.096294
7 0.083770 0.086927 0.022256 0.771043
8 0.049213 0.465223 0.941233 NaN
9 0.361318 0.031319 0.304045 0.188268
A B C D
0 0.154288 0.133700 0.362685 0.679109
1 0.194450 0.251210 0.758416 0.557619
2 0.514803 0.467800 0.087176 0.829095
4 0.514451 0.539105 0.664328 0.634057
5 0.353419 0.026643 0.165290 0.879319
6 0.067820 0.369086 0.115501 0.096294
7 0.083770 0.086927 0.022256 0.771043
9 0.361318 0.031319 0.304045 0.188268
四、Pandas如何精确设置表格数据的单元格的值
实战场景:Pandas如何精确设置表格数据的单元格的值
4.1主要知识点
- 文件读写
- 基础语法
- Pandas
- numpy
实战:
4.2创建 python 文件
""" 对如下DF,设置两个单元格的值 ·使用iloc 设置(3,B)的值是nan ·使用loc设置(8,D)的值是nan """ import numpy as np import pandas as pd np.random.seed(66) df = pd.DataFrame(np.random.rand(10, 4), columns=list('ABCD')) print(df) df.iloc[3, 1] = np.nan df.loc[8, 'D'] = np.nan print(df)
4.3运行结果
A B C D
0 0.154288 0.133700 0.362685 0.679109
1 0.194450 0.251210 0.758416 0.557619
2 0.514803 0.467800 0.087176 0.829095
3 0.298641 0.031346 0.678006 0.903489
4 0.514451 0.539105 0.664328 0.634057
5 0.353419 0.026643 0.165290 0.879319
6 0.067820 0.369086 0.115501 0.096294
7 0.083770 0.086927 0.022256 0.771043
8 0.049213 0.465223 0.941233 0.216512
9 0.361318 0.031319 0.304045 0.188268
A B C D
0 0.154288 0.133700 0.362685 0.679109
1 0.194450 0.251210 0.758416 0.557619
2 0.514803 0.467800 0.087176 0.829095
3 0.298641 NaN 0.678006 0.903489
4 0.514451 0.539105 0.664328 0.634057
5 0.353419 0.026643 0.165290 0.879319
6 0.067820 0.369086 0.115501 0.096294
7 0.083770 0.086927 0.022256 0.771043
8 0.049213 0.465223 0.941233 NaN
9 0.361318 0.031319 0.304045 0.188268
到此这篇关于Python Pandas 修改表格数据类型 DataFrame 列的顺序案例的文章就介绍到这了,更多相关Python Pandas 内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!