Java实现多线程大批量同步数据(分页)
作者:宋发元
这篇文章主要为大家详细介绍了Java实现多线程大批量同步数据(分页),文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
背景
最近遇到个功能,两个月有300w+的数据,之后还在累加,因一开始该数据就全部存储在mysql表,现需要展示在页面,还需要关联另一张表的数据,而且产品要求页面的查询条件多达20个条件,最终,这个功能卡的要死,基本查不出来数据。
最后是打算把这两张表的数据同时存储到MongoDB中去,以提高查询效率。
一开始同步的时候,采用单线程,循环以分页的模式去同步这两张表数据,结果是…一晚上,只同步了30w数据,特慢!!!
最后,改造了一番,2小时,就成功同步了300w+数据。
以下是主要逻辑。
线程的个数请根据你自己的服务器性能酌情设置。
思路
先通过count查出结果集的总条数,设置每个线程分页查询的条数,通过总条数和单次条数得到线程数量,通过改变limit的下标实现分批查询。
代码实现
package com.github.admin.controller.loans; import com.baomidou.mybatisplus.mapper.EntityWrapper; import com.github.admin.model.entity.CaseCheckCallRecord; import com.github.admin.model.entity.duyan.DuyanCallRecordDetail; import com.github.admin.model.entity.loans.CaseCallRemarkRecord; import com.github.admin.service.duyan.DuyanCallRecordDetailService; import com.github.admin.service.loans.CaseCallRemarkRecordService; import com.github.common.constant.MongodbConstant; import com.github.common.util.DingDingMsgSendUtils; import com.github.common.util.ListUtils; import com.github.common.util.Response; import com.github.common.util.concurrent.Executors; import lombok.extern.slf4j.Slf4j; import org.apache.commons.collections.CollectionUtils; import org.springframework.beans.BeanUtils; import org.springframework.beans.factory.DisposableBean; import org.springframework.beans.factory.annotation.Autowired; import org.springframework.beans.factory.annotation.Value; import org.springframework.data.mongodb.core.MongoTemplate; import org.springframework.data.mongodb.core.query.Criteria; import org.springframework.web.bind.annotation.GetMapping; import org.springframework.web.bind.annotation.RequestMapping; import org.springframework.web.bind.annotation.RestController; import java.util.ArrayList; import java.util.List; import java.util.Map; import java.util.concurrent.Callable; import java.util.concurrent.ExecutorService; import java.util.concurrent.Future; /** * 多线程同步历史数据 * @author songfayuan * @date 2019-09-26 15:38 */ @Slf4j @RestController @RequestMapping("/demo") public class SynchronizeHistoricalDataController implements DisposableBean { private ExecutorService executor = Executors.newFixedThreadPool(10, "SynchronizeHistoricalDataController"); //newFixedThreadPool 创建一个定长线程池,可控制线程最大并发数,超出的线程会在队列中等待。 @Value("${spring.profiles.active}") private String profile; @Autowired private DuyanCallRecordDetailService duyanCallRecordDetailService; @Autowired private MongoTemplate mongoTemplate; @Autowired private CaseCallRemarkRecordService caseCallRemarkRecordService; /** * 多线程同步通话记录历史数据 * @param params * @return * @throws Exception */ @GetMapping("/syncHistoryData") public Response syncHistoryData(Map<String, Object> params) throws Exception { executor.execute(new Runnable() { @Override public void run() { try { logicHandler(params); } catch (Exception e) { log.warn("多线程同步稽查通话记录历史数据才处理异常,errMsg = {}", e); DingDingMsgSendUtils.sendDingDingGroupMsg("【系统消息】" + profile + "环境,多线程同步稽查通话记录历史数据才处理异常,errMsg = "+e); } } }); return Response.success("请求成功"); } /** * 处理数据逻辑 * @param params * @throws Exception */ private void logicHandler(Map<String, Object> params) throws Exception { /******返回结果:多线程处理完的最终数据******/ List<DuyanCallRecordDetail> result = new ArrayList<>(); /******查询数据库总的数据条数******/ int count = this.duyanCallRecordDetailService.selectCount(new EntityWrapper<DuyanCallRecordDetail>() .eq("is_delete", 0) .eq("platform_type", 1)); DingDingMsgSendUtils.sendDingDingGroupMsg("【系统消息】" + profile + "环境,本次需要同步" + count + "条历史稽查通话记录数据。"); // int count = 2620266; /******限制每次查询的条数******/ int num = 1000; /******计算需要查询的次数******/ int times = count / num; if (count % num != 0) { times = times + 1; } /******每个线程开始查询的行数******/ int offset = 0; /******添加任务******/ List<Callable<List<DuyanCallRecordDetail>>> tasks = new ArrayList<>(); for (int i = 0; i < times; i++) { Callable<List<DuyanCallRecordDetail>> qfe = new ThredQuery(duyanCallRecordDetailService, params, offset, num); tasks.add(qfe); offset = offset + num; } /******为避免太多任务的最终数据全部存在list导致内存溢出,故将任务再次拆分单独处理******/ List<List<Callable<List<DuyanCallRecordDetail>>>> smallList = ListUtils.partition(tasks, 10); for (List<Callable<List<DuyanCallRecordDetail>>> callableList : smallList) { if (CollectionUtils.isNotEmpty(callableList)) { // executor.execute(new Runnable() { // @Override // public void run() { // log.info("任务拆分执行开始:线程{}拆分处理开始...", Thread.currentThread().getName()); // // log.info("任务拆分执行结束:线程{}拆分处理开始...", Thread.currentThread().getName()); // } // }); try { List<Future<List<DuyanCallRecordDetail>>> futures = executor.invokeAll(callableList); /******处理线程返回结果******/ if (futures != null && futures.size() > 0) { for (Future<List<DuyanCallRecordDetail>> future : futures) { List<DuyanCallRecordDetail> duyanCallRecordDetailList = future.get(); if (CollectionUtils.isNotEmpty(duyanCallRecordDetailList)){ executor.execute(new Runnable() { @Override public void run() { /******异步存储******/ log.info("异步存储MongoDB开始:线程{}拆分处理开始...", Thread.currentThread().getName()); saveMongoDB(duyanCallRecordDetailList); log.info("异步存储MongoDB结束:线程{}拆分处理开始...", Thread.currentThread().getName()); } }); } //result.addAll(future.get()); } } } catch (Exception e) { log.warn("任务拆分执行异常,errMsg = {}", e); DingDingMsgSendUtils.sendDingDingGroupMsg("【系统消息】" + profile + "环境,任务拆分执行异常,errMsg = "+e); } } } } /** * 数据存储MongoDB * @param duyanCallRecordDetailList */ private void saveMongoDB(List<DuyanCallRecordDetail> duyanCallRecordDetailList) { for (DuyanCallRecordDetail duyanCallRecordDetail : duyanCallRecordDetailList) { /******重复数据不同步MongoDB******/ org.springframework.data.mongodb.core.query.Query query = new org.springframework.data.mongodb.core.query.Query(); query.addCriteria(Criteria.where("callUuid").is(duyanCallRecordDetail.getCallUuid())); List<CaseCheckCallRecord> caseCheckCallRecordList = mongoTemplate.find(query, CaseCheckCallRecord.class, MongodbConstant.CASE_CHECK_CALL_RECORD); if (CollectionUtils.isNotEmpty(caseCheckCallRecordList)) { log.warn("call_uuid = {}在MongoDB已经存在数据,后面数据将被舍弃...", duyanCallRecordDetail.getCallUuid()); continue; } /******关联填写的记录******/ CaseCallRemarkRecord caseCallRemarkRecord = this.caseCallRemarkRecordService.selectOne(new EntityWrapper<CaseCallRemarkRecord>() .eq("is_delete", 0) .eq("call_uuid", duyanCallRecordDetail.getCallUuid())); CaseCheckCallRecord caseCheckCallRecord = new CaseCheckCallRecord(); BeanUtils.copyProperties(duyanCallRecordDetail, caseCheckCallRecord); //补充 caseCheckCallRecord.setCollectorUserId(duyanCallRecordDetail.getUserId()); if (caseCallRemarkRecord != null) { //补充 caseCheckCallRecord.setCalleeName(caseCallRemarkRecord.getContactName()); } log.info("正在存储数据到MongoDB:{}", caseCheckCallRecord.toString()); this.mongoTemplate.save(caseCheckCallRecord, MongodbConstant.CASE_CHECK_CALL_RECORD); } } @Override public void destroy() throws Exception { executor.shutdown(); } } class ThredQuery implements Callable<List<DuyanCallRecordDetail>> { /******需要通过构造方法把对应的业务service传进来 实际用的时候把类型变为对应的类型******/ private DuyanCallRecordDetailService myService; /******查询条件 根据条件来定义该类的属性******/ private Map<String, Object> params; /******分页index******/ private int offset; /******数量******/ private int num; public ThredQuery(DuyanCallRecordDetailService myService, Map<String, Object> params, int offset, int num) { this.myService = myService; this.params = params; this.offset = offset; this.num = num; } @Override public List<DuyanCallRecordDetail> call() throws Exception { /******通过service查询得到对应结果******/ List<DuyanCallRecordDetail> duyanCallRecordDetailList = myService.selectList(new EntityWrapper<DuyanCallRecordDetail>() .eq("is_delete", 0) .eq("platform_type", 1) .last("limit "+offset+", "+num)); return duyanCallRecordDetailList; } }
ListUtils工具
package com.github.common.util; import com.google.common.collect.Lists; import lombok.extern.slf4j.Slf4j; import java.io.*; import java.util.ArrayList; import java.util.List; /** * 描述:List工具类 * @author songfayuan * 2018年7月22日下午2:23:22 */ @Slf4j public class ListUtils { /** * 描述:list集合深拷贝 * @param src * @return * @throws IOException * @throws ClassNotFoundException * @author songfayuan * 2018年7月22日下午2:35:23 */ public static <T> List<T> deepCopy(List<T> src) { try { ByteArrayOutputStream byteout = new ByteArrayOutputStream(); ObjectOutputStream out = new ObjectOutputStream(byteout); out.writeObject(src); ByteArrayInputStream bytein = new ByteArrayInputStream(byteout.toByteArray()); ObjectInputStream in = new ObjectInputStream(bytein); @SuppressWarnings("unchecked") List<T> dest = (List<T>) in.readObject(); return dest; } catch (ClassNotFoundException e) { e.printStackTrace(); return null; } catch (IOException e) { e.printStackTrace(); return null; } } /** * 描述:对象深拷贝 * @param src * @return * @throws IOException * @throws ClassNotFoundException * @author songfayuan * 2018年12月14日 */ public static <T> T objDeepCopy(T src) { try { ByteArrayOutputStream byteout = new ByteArrayOutputStream(); ObjectOutputStream out = new ObjectOutputStream(byteout); out.writeObject(src); ByteArrayInputStream bytein = new ByteArrayInputStream(byteout.toByteArray()); ObjectInputStream in = new ObjectInputStream(bytein); @SuppressWarnings("unchecked") T dest = (T) in.readObject(); return dest; } catch (ClassNotFoundException e) { log.error("errMsg = {}", e); return null; } catch (IOException e) { log.error("errMsg = {}", e); return null; } } /** * 将一个list均分成n个list,主要通过偏移量来实现的 * @author songfayuan * 2018年12月14日 */ public static <T> List<List<T>> averageAssign(List<T> source, int n) { List<List<T>> result = new ArrayList<List<T>>(); int remaider = source.size() % n; //(先计算出余数) int number = source.size() / n; //然后是商 int offset = 0;//偏移量 for (int i = 0; i < n; i++) { List<T> value = null; if (remaider > 0) { value = source.subList(i * number + offset, (i + 1) * number + offset + 1); remaider--; offset++; } else { value = source.subList(i * number + offset, (i + 1) * number + offset); } result.add(value); } return result; } /** * List按指定长度分割 * @param list the list to return consecutive sublists of (需要分隔的list) * @param size the desired size of each sublist (the last may be smaller) (分隔的长度) * @author songfayuan * @date 2019-07-07 21:37 */ public static <T> List<List<T>> partition(List<T> list, int size){ return Lists.partition(list, size); // 使用guava } /** * 测试 * @param args */ public static void main(String[] args) { List<Integer> bigList = new ArrayList<>(); for (int i = 0; i < 101; i++){ bigList.add(i); } log.info("bigList长度为:{}", bigList.size()); log.info("bigList为:{}", bigList); List<List<Integer>> smallists = partition(bigList, 20); log.info("smallists长度为:{}", smallists.size()); for (List<Integer> smallist : smallists) { log.info("拆分结果:{},长度为:{}", smallist, smallist.size()); } } }
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。