python

关注公众号 jb51net

关闭
首页 > 脚本专栏 > python > Python Bokeh数据可视化

Python利用Bokeh进行数据可视化的教程分享

作者:海拥

Bokeh是Python中的数据可视化库,提供高性能的交互式图表和绘图。本文将利用Bokeh绘制一些可视化图表,文中的示例代码讲解详细,感兴趣的可以了解一下

介绍

Bokeh是 Python 中的数据可视化库,提供高性能的交互式图表和绘图。Bokeh 输出可以在笔记本、html 和服务器等各种媒体中获得。可以在 Django 和烧瓶应用程序中嵌入散景图。

Bokeh 为用户提供了两个可视化界面:

bokeh.models:为应用程序开发人员提供高度灵活性的低级接口。

bokeh.plotting:用于创建视觉字形的高级界面。

要安装 bokeh 包,请在终端中运行以下命令:

pip install bokeh

用于生成散景图的数据集是从Kaggle收集的。

代码1.散点标记

要创建散点圆标记,使用 circle() 方法。

# 导入模块
from bokeh.plotting import figure, output_notebook, show

# 输出到 notebook
output_notebook()

# 创建图
p = figure(plot_width = 400, plot_height = 400)

# 添加具有大小、颜色和 alpha 的圆形渲染器
p.circle([1, 2, 3, 4, 5], [4, 7, 1, 6, 3],
		size = 10, color = "navy", alpha = 0.5)

# 显示结果
show(p)

输出 :

代码2.单行

要创建单行,使用 line() 方法。

# 导入模块
from bokeh.plotting import figure, output_notebook, show

# 输出到 notebook
output_notebook()

# 创建图
p = figure(plot_width = 400, plot_height = 400)

# 添加线渲染器
p.line([1, 2, 3, 4, 5], [3, 1, 2, 6, 5],
		line_width = 2, color = "green")

# 显示结果
show(p)

输出 :

代码3.条形图

条形图用矩形条显示分类数据。条的长度与表示的值成比例。

# 导入必要的模块
import pandas as pd
from bokeh.charts import Bar, output_notebook, show

# 输出到 notebook
output_notebook()

# 读取数据框中的数据
df = pd.read_csv(r"D:/kaggle/mcdonald/menu.csv")

# 创建栏
p = Bar(df, "Category", values = "Calories",
		title = "Total Calories by Category",
						legend = "top_right")

# 显示结果
show(p)

输出 :

代码4.箱线图

箱线图用于表示图表上的统计数据。它有助于总结数据中存在的各种数据组的统计属性。

# 导入必要的模块
from bokeh.charts import BoxPlot, output_notebook, show
import pandas as pd

# 输出到 notebook
output_notebook()

# 读取数据框中的数据
df = pd.read_csv(r"D:/kaggle / mcdonald / menu.csv")

# 创建栏
p = BoxPlot(df, values = "Protein", label = "Category",
			color = "yellow", title = "Protein Summary (grouped by category)",
			legend = "top_right")

# 显示结果
show(p)

输出 :

代码5.直方图

直方图用于表示数值数据的分布。直方图中矩形的高度与类间隔中值的频率成正比。

# 导入必要的模块
from bokeh.charts import Histogram, output_notebook, show
import pandas as pd

# 输出到 notebook
output_notebook()

# 读取数据框中的数据
df = pd.read_csv(r"D:/kaggle / mcdonald / menu.csv")

# 创建直方图
p = Histogram(df, values = "Total Fat",
			title = "Total Fat Distribution",
			color = "navy")

# 显示结果
show(p)

输出 :

代码6.散点图

散点图用于绘制数据集中两个变量的值。它有助于找到所选的两个变量之间的相关性。

# 导入必要的模块
from bokeh.charts import Scatter, output_notebook, show
import pandas as pd

# 输出到 notebook
output_notebook()

# 读取数据框中的数据
df = pd.read_csv(r"D:/kaggle / mcdonald / menu.csv")

# 创建散点图
p = Scatter(df, x = "Carbohydrates", y = "Saturated Fat",
			title = "Saturated Fat vs Carbohydrates",
			xlabel = "Carbohydrates", ylabel = "Saturated Fat",
			color = "orange")

# 显示结果
show(p)

输出:

以上就是Python利用Bokeh进行数据可视化的教程分享的详细内容,更多关于Python Bokeh数据可视化的资料请关注脚本之家其它相关文章!

您可能感兴趣的文章:
阅读全文