python的numpy模块实现逻辑回归模型
作者:上进的小菜鸟
这篇文章主要为大家详细介绍了python的numpy模块实现逻辑回归模型,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
使用python的numpy模块实现逻辑回归模型的代码,供大家参考,具体内容如下
使用了numpy模块,pandas模块,matplotlib模块
1.初始化参数
def initial_para(nums_feature): """initial the weights and bias which is zero""" #nums_feature是输入数据的属性数目,因此权重w是[1, nums_feature]维 #且w和b均初始化为0 w = np.zeros((1, nums_feature)) b = 0 return w, b
2.逻辑回归方程
def activation(x, w , b): """a linear function and then sigmoid activation function: x_ = w*x +b,y = 1/(1+exp(-x_))""" #线性方程,输入的x是[batch, 2]维,输出是[1, batch]维,batch是模型优化迭代一次输入数据的数目 #[1, 2] * [2, batch] = [1, batch], 所以是w * x.T(x的转置) #np.dot是矩阵乘法 x_ = np.dot(w, x.T) + b #np.exp是实现e的x次幂 sigmoid = 1 / (1 + np.exp(-x_)) return sigmoid
3.梯度下降
def gradient_descent_batch(x, w, b, label, learning_rate): #获取输入数据的数目,即batch大小 n = len(label) #进行逻辑回归预测 sigmoid = activation(x, w, b) #损失函数,np.sum是将矩阵求和 cost = -np.sum(label.T * np.log(sigmoid) + (1-label).T * np.log(1-sigmoid)) / n #求对w和b的偏导(即梯度值) g_w = np.dot(x.T, (sigmoid - label.T).T) / n g_b = np.sum((sigmoid - label.T)) / n #根据梯度更新参数 w = w - learning_rate * g_w.T b = b - learning_rate * g_b return w, b, cost
4.模型优化
def optimal_model_batch(x, label, nums_feature, step=10000, batch_size=1): """train the model with batch""" length = len(x) w, b = initial_para(nums_feature) for i in range(step): #随机获取一个batch数目的数据 num = randint(0, length - 1 - batch_size) x_batch = x[num:(num+batch_size), :] label_batch = label[num:num+batch_size] #进行一次梯度更新(优化) w, b, cost = gradient_descent_batch(x_batch, w, b, label_batch, 0.0001) #每1000次打印一下损失值 if i%1000 == 0: print('step is : ', i, ', cost is: ', cost) return w, b
5.读取数据,数据预处理,训练模型,评估精度
import numpy as np import pandas as pd from sklearn.model_selection import train_test_split from random import randint from sklearn.preprocessing import StandardScaler def _main(): #读取csv格式的数据data_path是数据的路径 data = pd.read_csv('data_path') #获取样本属性和标签 x = data.iloc[:, 2:4].values y = data.iloc[:, 4].values #将数据集分为测试集和训练集 x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.2, random_state=0) #数据预处理,去均值化 standardscaler = StandardScaler() x_train = standardscaler.fit_transform(x_train) x_test = standardscaler.transform(x_test) #w, b = optimal_model(x_train, y_train, 2, 50000) #训练模型 w, b = optimal_model_batch(x_train, y_train, 2, 50000, 64) print('trian is over') #对测试集进行预测,并计算精度 predict = activation(x_test, w, b).T n = 0 for i, p in enumerate(predict): if p >=0.5: if y_test[i] == 1: n += 1 else: if y_test[i] == 0: n += 1 print('accuracy is : ', n / len(y_test))
6.结果可视化
predict = np.reshape(np.int32(predict), [len(predict)]) #将预测结果以散点图的形式可视化 for i, j in enumerate(np.unique(predict)): plt.scatter(x_test[predict == j, 0], x_test[predict == j, 1], c = ListedColormap(('red', 'blue'))(i), label=j) plt.show()
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。