Python使用pytorch动手实现LSTM模块
作者:qyhyzard
这篇文章主要介绍了Python使用pytorch动手实现LSTM模块,LSTM是RNN中一个较为流行的网络模块。主要包括输入,输入门,输出门,遗忘门,激活函数,全连接层(Cell)和输出
LSTM 简介:
LSTM是RNN中一个较为流行的网络模块。主要包括输入,输入门,输出门,遗忘门,激活函数,全连接层(Cell)和输出。
其结构如下:
上述公式不做解释,我们只要大概记得以下几个点就可以了:
- 当前时刻LSTM模块的输入有来自当前时刻的输入值,上一时刻的输出值,输入值和隐含层输出值,就是一共有四个输入值,这意味着一个LSTM模块的输入量是原来普通全连接层的四倍左右,计算量多了许多。
- 所谓的门就是前一时刻的计算值输入到sigmoid激活函数得到一个概率值,这个概率值决定了当前输入的强弱程度。 这个概率值和当前输入进行矩阵乘法得到经过门控处理后的实际值。
- 门控的激活函数都是sigmoid,范围在(0,1),而输出输出单元的激活函数都是tanh,范围在(-1,1)。
Pytorch实现如下:
import torch import torch.nn as nn from torch.nn import Parameter from torch.nn import init from torch import Tensor import math class NaiveLSTM(nn.Module): """Naive LSTM like nn.LSTM""" def __init__(self, input_size: int, hidden_size: int): super(NaiveLSTM, self).__init__() self.input_size = input_size self.hidden_size = hidden_size # input gate self.w_ii = Parameter(Tensor(hidden_size, input_size)) self.w_hi = Parameter(Tensor(hidden_size, hidden_size)) self.b_ii = Parameter(Tensor(hidden_size, 1)) self.b_hi = Parameter(Tensor(hidden_size, 1)) # forget gate self.w_if = Parameter(Tensor(hidden_size, input_size)) self.w_hf = Parameter(Tensor(hidden_size, hidden_size)) self.b_if = Parameter(Tensor(hidden_size, 1)) self.b_hf = Parameter(Tensor(hidden_size, 1)) # output gate self.w_io = Parameter(Tensor(hidden_size, input_size)) self.w_ho = Parameter(Tensor(hidden_size, hidden_size)) self.b_io = Parameter(Tensor(hidden_size, 1)) self.b_ho = Parameter(Tensor(hidden_size, 1)) # cell self.w_ig = Parameter(Tensor(hidden_size, input_size)) self.w_hg = Parameter(Tensor(hidden_size, hidden_size)) self.b_ig = Parameter(Tensor(hidden_size, 1)) self.b_hg = Parameter(Tensor(hidden_size, 1)) self.reset_weigths() def reset_weigths(self): """reset weights """ stdv = 1.0 / math.sqrt(self.hidden_size) for weight in self.parameters(): init.uniform_(weight, -stdv, stdv) def forward(self, inputs: Tensor, state: Tuple[Tensor]) \ -> Tuple[Tensor, Tuple[Tensor, Tensor]]: """Forward Args: inputs: [1, 1, input_size] state: ([1, 1, hidden_size], [1, 1, hidden_size]) """ # seq_size, batch_size, _ = inputs.size() if state is None: h_t = torch.zeros(1, self.hidden_size).t() c_t = torch.zeros(1, self.hidden_size).t() else: (h, c) = state h_t = h.squeeze(0).t() c_t = c.squeeze(0).t() hidden_seq = [] seq_size = 1 for t in range(seq_size): x = inputs[:, t, :].t() # input gate i = torch.sigmoid(self.w_ii @ x + self.b_ii + self.w_hi @ h_t + self.b_hi) # forget gate f = torch.sigmoid(self.w_if @ x + self.b_if + self.w_hf @ h_t + self.b_hf) # cell g = torch.tanh(self.w_ig @ x + self.b_ig + self.w_hg @ h_t + self.b_hg) # output gate o = torch.sigmoid(self.w_io @ x + self.b_io + self.w_ho @ h_t + self.b_ho) c_next = f * c_t + i * g h_next = o * torch.tanh(c_next) c_next_t = c_next.t().unsqueeze(0) h_next_t = h_next.t().unsqueeze(0) hidden_seq.append(h_next_t) hidden_seq = torch.cat(hidden_seq, dim=0) return hidden_seq, (h_next_t, c_next_t) def reset_weigths(model): """reset weights """ for weight in model.parameters(): init.constant_(weight, 0.5) ### test inputs = torch.ones(1, 1, 10) h0 = torch.ones(1, 1, 20) c0 = torch.ones(1, 1, 20) print(h0.shape, h0) print(c0.shape, c0) print(inputs.shape, inputs) # test naive_lstm with input_size=10, hidden_size=20 naive_lstm = NaiveLSTM(10, 20) reset_weigths(naive_lstm) output1, (hn1, cn1) = naive_lstm(inputs, (h0, c0)) print(hn1.shape, cn1.shape, output1.shape) print(hn1) print(cn1) print(output1)
对比官方实现:
# Use official lstm with input_size=10, hidden_size=20 lstm = nn.LSTM(10, 20) reset_weigths(lstm) output2, (hn2, cn2) = lstm(inputs, (h0, c0)) print(hn2.shape, cn2.shape, output2.shape) print(hn2) print(cn2) print(output2)
可以看到与官方的实现有些许的不同,但是输出的结果仍旧一致。
到此这篇关于Python使用pytorch动手实现LSTM模块的文章就介绍到这了,更多相关Python实现LSTM模块内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!