python

关注公众号 jb51net

关闭
首页 > 脚本专栏 > python > pandas找出删除重复数据

Python pandas找出、删除重复的数据实例

作者:william_cheng666

在面试中很可能遇到给定一个含有重复元素的列表,删除其中重复的元素,下面这篇文章主要给大家介绍了关于Python pandas找出、删除重复数据的相关资料,文中通过实例代码介绍的非常详细,需要的朋友可以参考下

前言

当我们使用pandas处理数据的时候,经常会遇到数据重复的问题,如何找出重复数据进而分析重复原因,或者如何直接删除重复的数据是一个关键的步骤,pandas提供了很方便的方法:duplicated()和drop_duplicates()。

一、duplicated()

duplicated()可以被用在DataFrame的三种情况下,分别是pandas.DataFrame.duplicated、pandas.Series.duplicated和pandas.Index.duplicated。他们的用法都类似,前两个会返回一个布尔值的Series,最后一个会返回一个布尔值的numpy.ndarray。

DataFrame.duplicated(subset=None, keep=‘first’)

subset:默认为None,需要标记重复的标签或标签序列

keep:默认为‘first’,如何标记重复标签

Series.duplicated(keep=‘first’)

keep:与DataFrame.duplicated的keep相同

Index.duplicated(keep=‘first’)

keep:与DataFrame.duplicated的keep相同

例子:

import pandas as pd
df = pd.DataFrame({
    'brand': ['Yum Yum', 'Yum Yum', 'Indomie', 'Indomie', 'Indomie'],
    'style': ['cup', 'cup', 'cup', 'pack', 'pack'],
    'rating': [4, 4, 3.5, 15, 5]
})
df

    brand style  rating
0  Yum Yum   cup     4.0
1  Yum Yum   cup     4.0
2  Indomie   cup     3.5
3  Indomie  pack    15.0
4  Indomie  pack     5.0 

df.duplicated()

0    False
1     True
2    False
3    False
4    False
dtype: bool

df.duplicated(keep='last')

0     True
1    False
2    False
3    False
4    False
dtype: bool

df.duplicated(keep=False)

0     True
1     True
2    False
3    False
4    False
dtype: bool

df.duplicated(subset=['brand'])

0    False
1     True
2    False
3     True
4     True
dtype: bool

关于Index的重复标记:

df = df.set_index('brand')
df

        style  rating
brand                
Yum Yum   cup     4.0
Yum Yum   cup     4.0
Indomie   cup     3.5
Indomie  pack    15.0
Indomie  pack     5.0

df.index.duplicated()
array([False,  True, False,  True,  True])

二、drop_duplicates()

与duplicated()类似,drop_duplicates()是直接把重复值给删掉。下面只会介绍一些含义不同的参数。

DataFrame.drop_duplicates(subset=None, keep=‘first’, inplace=False)

Series.drop_duplicates()相比Series.duplicated()也是多了一个inplace参数,和上诉介绍一样,Index.drop_duplicates()与Index.duplicated()参数相同就不做赘述。下面是例子:

df = pd.DataFrame({
    'brand': ['Yum Yum', 'Yum Yum', 'Indomie', 'Indomie', 'Indomie'],
    'style': ['cup', 'cup', 'cup', 'pack', 'pack'],
    'rating': [4, 4, 3.5, 15, 5]
})
df

     brand style  rating
0  Yum Yum   cup     4.0
1  Yum Yum   cup     4.0
2  Indomie   cup     3.5
3  Indomie  pack    15.0
4  Indomie  pack     5.0

df.drop_duplicates()

     brand style  rating
0  Yum Yum   cup     4.0
2  Indomie   cup     3.5
3  Indomie  pack    15.0
4  Indomie  pack     5.0

df.drop_duplicates(inplace = True)

df

     brand style  rating
0  Yum Yum   cup     4.0
2  Indomie   cup     3.5
3  Indomie  pack    15.0
4  Indomie  pack     5.0

总结

有剩余无,pandas有很多好用的库,但是系统学下来很不现实,都是在实际项目中不断的发现、积累、记录下来。

到此这篇关于Python pandas找出、删除重复数据的文章就介绍到这了,更多相关pandas找出删除重复数据内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

您可能感兴趣的文章:
阅读全文