Redis

关注公众号 jb51net

关闭
首页 > 数据库 > Redis > Redis内存淘汰

深入理解Redis内存淘汰策略

作者:紫乾2014

本文主要介绍了深入理解Redis内存淘汰策略,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧

一、内存回收

长时间不使用的缓存

很多人了解了Redis的好处之后,于是把任何数据都往Redis中放,如果使用不合理很容易导致数据超过Redis的内存,这种情况会出现什么问题呢?

所以遇到这类问题的时候,我们一般有几种方法。

二、设置内存

在实际生产环境中,服务器不仅仅只有Redis,为了避免Redis内存使用过多对其他程序造成影响,我们一般会设置最大内存。Redis默认的最大内存 maxmemory=0 ,表示不限制Redis内存的使用。我们可以修改 redis.conf 文件,设置Redis最大使用的内存。

# 单位为byte
maxmemory <bytes> 2147483648(2G)

如何查看当前Redis最大内存设置呢,进入到Redis-Cli控制台,输入下面这个命令。

config get maxmemory

当Redis中存储的内存超过maxmemory时,会怎么样呢?下面我们做一个实验

在redis-cli控制台输入下面这个命令,把最大内存设置为1个字节。

config set maxmemory 1

通过下面的命令存储一个string类型的数据

set name mvp

此时,控制台会得到下面这个错误信息

(error) OOM command not allowed when used memory > 'maxmemory'.

三、内存淘汰策略

设置了maxmemory的选项,redis内存使用达到上限。可以通过设置LRU算法来删除部分key,释放空间。默认是按照过期时间的,如果set时候没有加上过期时间就会导致数据写满maxmemory。Redis中提供了一种内存淘汰策略,当内存不足时,Redis会根据相应的淘汰规则对key数据进行淘汰。Redis一共提供了8种淘汰策略,默认的策略为noeviction,当内存使用达到阈值的时候,所有引起申请内存的命令会都会报错。

前缀为volatile-和allkeys-的区别在于二者选择要清除的键时的字典不同,volatile-前缀的策略代表从redisDb中的expire字典中选择键进行清除;allkeys-开头的策略代表从dict字典中选择键进行清除。
内存淘汰算法的具体工作原理是:

四、LRU

4.1 LRU算法

LRU是Least Recently Used的缩写,也就是表示最近很少使用,也可以理解成最久没有使用。也就是说当内存不够的时候,每次添加一条数据,都需要抛弃一条最久时间没有使用的旧数据。标准的LRU算法为了降低查找和删除元素的时间复杂度,一般采用Hash表和双向链表结合的数据结构,hash表可以赋予链表快速查找到某个key是否存在链表中,同时可以快速删除、添加节点,如下图所示。


双向链表的查找时间复杂度是O(n),删除和插入是O(1),借助HashMap结构,可以使得查找的时间复杂度变成O(1)。
Hash表用来查询在链表中的数据位置,链表负责数据的插入,当新数据插入到链表头部时有两种情况。

这样,经过多次Cache操作之后,最近被命中的缓存,都会存在链表头部的方向,没有命中的,都会在链表尾部方向,当需要替换内容时,由于链表尾部是最少被命中的,我们只需要淘汰链表尾部的数据即可。
java代码实现简单的LRU算法

import java.util.HashMap;

public class LRUCache {

    private Node head;
        private Node tail;

        private final HashMap<String,Node> nodeHashMap;
        private int capacity; //容量

    public LRUCache(int capacity) {
        this.capacity = capacity;
        nodeHashMap=new HashMap<>();
        tail=new Node();
        head=new Node();
        head.next=tail;
        tail.prev=head;
    }

    //移除节点
    private void removeNode(Node node){
        if(node==tail){
            tail=tail.prev;
            tail.next=null;
        }else if(node==head){
            head=head.next;
            head.prev=null;
        }else{
            node.prev.next=node.next;
            node.next.prev=node.prev;
        }
    }
    private void addNodeToHead(Node node){
        node.next=head.next;
        head.next.prev=node;
        node.prev=head;
        head.next=node;
    }

    private void moveNodeToHead(Node node){
        removeNode(node);
        addNodeToHead(node);
    }
    public String get(String key){
        Node node=nodeHashMap.get(key);
        if(node==null){
            return null;
        }
        //刷新当前key的位置
        moveNodeToHead(node);
        return node.value;
    }
    public void put(String key,String value){
        Node node=nodeHashMap.get(key);
        if(node==null){ //如果不存在,则添加到链表
            if(nodeHashMap.size()>=capacity){ //大于容量,则需要移除老的数据
                removeNode(tail); //移除尾部节点(tail节点是属于要被淘汰数据)
                nodeHashMap.remove(tail.key); //从hashmap中移除
            }
            node=new Node(key,value);
            nodeHashMap.put(key,node);
            addNodeToHead(node);
        }else{
            node.value=value;
            moveNodeToHead(node);
        }
    }

    class Node{
        private String key;
        private String value;
        Node prev;
        Node next;

        public Node(){}

        public Node(String key,String value){
            this.key=key;
            this.value=value;
        }
    }
}

4.2 redis中的LRU算法

实际上,Redis使用的LRU算法其实是一种不可靠的LRU算法,它实际淘汰的键并不一定是真正最少使用的数据,它的工作机制是:

这5个key是默认的个数,具体的数值可以在redis.conf中配置

maxmemory-samples 5

当近似LRU算法取值越大的时候就会越接近真实的LRU算法,因为取值越大获取的数据越完整,淘汰中的数据就更加接近最少使用的数据。这里其实涉及一个权衡问题,如果需要在所有的数据中搜索最符合条件的数据,那么一定会增加系统的开销,Redis是单线程的,所以耗时的操作会谨慎一些。为了在一定成本内实现相对的LRU,早期的Redis版本是基于采样的LRU,也就是放弃了从所有数据中搜索解改为采样空间搜索最优解。Redis3.0版本之后,Redis作者对于基于采样的LRU进行了一些优化:

如下图所示,首先从目标字典中采集出maxmemory-samples个键,缓存在一个samples数组中,然后从samples数组中一个个取出来,和回收池中的键进行键的空闲时间比较,从而更新回收池。在更新过程中,首先利用遍历找到的每个键的实际插入位置x,然后根据不同情况进行处理。

这样做的目的是能够选出最真实的最少被访问的key,能够正确选择不常使用的key。因为在Redis3.0之前是随机选取样本,这样的方式很有可能不是真正意义上的最少访问的key。LRU算法有一个弊端,假如一个key值访问频率很低,但是最近一次被访问到了,那LRU会认为它是热点数据,不会被淘汰。同样,经常被访问的数据,最近一段时间没有被访问,这样会导致这些数据被淘汰掉,导致误判而淘汰掉热点数据,于是在Redis 4.0中,新加了一种LFU算法。

五、LFU

LFU(Least Frequently Used),表示最近最少使用,它和key的使用次数有关,其思想是:根据key最近被访问的频率进行淘汰,比较少访问的key优先淘汰,反之则保留。LFU的原理是使用计数器来对key进行排序,每次key被访问时,计数器会增大,当计数器越大,意味着当前key的访问越频繁,也就是意味着它是热点数据。 它很好的解决了LRU算法的缺陷:一个很久没有被访问的key,偶尔被访问一次,导致被误认为是热点数据的问题。LFU的实现原理如下图所示,LFU维护了两个链表,横向组成的链表用来存储访问频率,每个访问频率的节点下存储另外一个具有相同访问频率的缓存数据。具体的工作原理是:

添加元素时,访问频率默认为1,随着访问次数的增加,频率不断递增。而当前被访问的元素也会随着频率增加进行移动。

 到此这篇关于深入理解Redis内存淘汰策略的文章就介绍到这了,更多相关Redis内存淘汰内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

您可能感兴趣的文章:
阅读全文