python

关注公众号 jb51net

关闭
首页 > 脚本专栏 > python > python多线程利用多核cpu

python多线程对多核cpu的利用解析

作者:挪威的森林s

这篇文章主要为大家介绍了python多线程对多核cpu的利用解析,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪

引言

我们经常听到"因为GIL的存在,python的多线程不能利用多核CPU",现在我们暂且不提GIL,python能不能利用多核cpu,今天我做了一个实验,代码很简单如下所示

while 1:
    pass

没有运行这段代码前cpu状态

运行之后的状态

下面两张图是运行之后的状态,当然这只是两张比较有代表性的图,截图间隔有十几秒的样子

根据第一张图我们发现cpu1、cpu3的负载有明显增长,我们可以得出python线程是可以利用多核cpu的结论,之前一直以为python运行后会绑定cpu其中的一个核心现在看来并不是这个样子。第二张图就比较有意思了cpu2满载了,这又是为什么呢?

想来想去应该是linux中cpu对进程的亲和性导致的,这种亲和性是软性的并不是强制的,这也就解释了为什么第一张图中是多cpu在负载。

ok为了更直观的看出python线程能够利用多核cpu,我们改下代码,换一种方式再来看下

import os
while 1:
    print os.getpid() # 输出进程号

运行代码结果

一目了然,线程的确在不同的核心上切换。

现在我们回过头看下那句经典的话"因为GIL的存在,python的多线程不能利用多核CPU",这句话很容易让人理解成GIL会让python在一个核心上运行,有了今天的例子我们再来重新理解这句话,GIL的存在让python在同一时刻只能有一个线程在运行,这毋庸置疑,但是它并没有给线程锁死或者说指定只能在某个cpu上运行,另外我需要说明一点的是GIL是与进程对应的,每个进程都有一个GIL。

python线程的执行流程理解

线程 ——>抢GIL——>CPU

这种执行流程导致了CPU密集型的多线程程序虽然能够利用多核cpu时跟单核cpu是差不多的,并且由于多个线程抢GIL这个环节导致运行效率<=单线程。

看到这可能会让人产生一种错觉,有了GIL后python是线程安全的,好像根本不需要线程锁,而实际情况是线程拿到CPU资源后并不是一直执行的,python解释器在执行了该线程100条字节码(注意是字节码不是代码)时会释放掉该线程的GIL,如果这时候没有加锁那么其他线程就可能修改该线程用到的资源;

遇到IO也会释放GIL

另外一个问题是遇到IO也会释放GIL,下面是这两种情况的例子

import threading
a = []
def m1():
    for _ in range(100000):
        a.append(1)
def m2():
    for _ in range(100000):
        a.append(2)
def check():
    """
    检查a是否有序
    """
    for i in range(len(a)):
        if i != 0:
            if a[i] &lt; a[i-1]:
                print a[i-1], a[i]
                return False
    return True
t1 = threading.Thread(target=m1)
t2 = threading.Thread(target=m2)
t1.start()
t2.start()
t1.join()
t2.join()
print check()

预期1111...22222...,截图显示跟预期的不同

import threading
text1 = '1' * 10000
text2 = '2' * 10000
def write(text):
    with open('test.txt', 'a') as f:
        f.write(text)
def m1():
    write(text1)
def m2():
    write(text2)
t1 = threading.Thread(target=m1)
t2 = threading.Thread(target=m2)
t1.start()
t2.start()
t1.join()
t2.join()

test.txt截图

最后结论是,因为GIL的存在,python的多线程虽然可以利用多核CPU,但并不能让多个核同时工作。

以上就是python多线程对多核cpu的利用解析的详细内容,更多关于python多线程利用多核cpu的资料请关注脚本之家其它相关文章!

您可能感兴趣的文章:
阅读全文