python中的多线程锁lock=threading.Lock()使用方式
作者:DK数据工作室
多线程锁lock=threading.Lock()使用
疑问
多线程任务是同时执行的,如果我们需要先执行线程a,再执行线程b,需要怎么办呢?
解决方法
使用python的多线程锁lock。
例子
未使用多线程锁lock:
def a(): for i in range(3): print('a%d' % (i + 1)) time.sleep(1) def b(): for i in range(3): print('b%d' % (i + 1)) time.sleep(1) T = threading.Thread(target=a) T.start() T = threading.Thread(target=b) T.start()
运行结果:可看到,线程a和b是同时执行的
a1
b1
a2b2a3
b3Process finished with exit code 0
使用多线程锁lock后:
lock = threading.Lock() def a(): lock.acquire() for i in range(3): print('a%d' % (i + 1)) time.sleep(1) lock.release() def b(): lock.acquire() for i in range(3): print('b%d' % (i + 1)) time.sleep(1) lock.release() T = threading.Thread(target=a) T.start() T = threading.Thread(target=b) T.start()
运行结果:可看到,线程a先执行完,再执行线程b
a1
a2
a3
b1
b2
b3Process finished with exit code 0
python多线程中锁的概念
锁可以独立提取出来
mutex = threading.Lock() #锁的使用 #创建锁 mutex = threading.Lock() #锁定 mutex.acquire([timeout]) #释放 mutex.release()
概念
好几个人问我给资源加锁是怎么回事,其实并不是给资源加锁, 而是用锁去锁定资源,你可以定义多个锁, 像下面的代码, 当你需要独占某一资源时,任何一个锁都可以锁这个资源
就好比你用不同的锁都可以把相同的一个门锁住是一个道理
import threading import time counter = 0 counter_lock = threading.Lock() #只是定义一个锁,并不是给资源加锁,你可以定义多个锁,像下两行代码,当你需要占用这个资源时,任何一个锁都可以锁这个资源 counter_lock2 = threading.Lock() counter_lock3 = threading.Lock() #可以使用上边三个锁的任何一个来锁定资源 class MyThread(threading.Thread):#使用类定义thread,继承threading.Thread def __init__(self,name): threading.Thread.__init__(self) self.name = "Thread-" + str(name) def run(self): #run函数必须实现 global counter,counter_lock #多线程是共享资源的,使用全局变量 time.sleep(1); if counter_lock.acquire(): #当需要独占counter资源时,必须先锁定,这个锁可以是任意的一个锁,可以使用上边定义的3个锁中的任意一个 counter += 1 print "I am %s, set counter:%s" % (self.name,counter) counter_lock.release() #使用完counter资源必须要将这个锁打开,让其他线程使用 if __name__ == "__main__": for i in xrange(1,101): my_thread = MyThread(i) my_thread.start()
线程不安全
最普通的一个多线程小例子。我一笔带过地讲一讲,我创建了一个继承Thread类的子类MyThread,作为我们的线程启动类。按照规定,重写Thread的run方法,我们的线程启动起来后会自动调用该方法。于是我首先创建了10个线程,并将其加入列表中。再使用一个for循环,开启每个线程。在使用一个for循环,调用join方法等待所有线程结束才退出主线程。
这段代码看似简单,但实际上隐藏着一个很大的问题,只是在这里没有体现出来。你真的以为我创建了10个线程,并按顺序调用了这10个线程,每个线程为n增加了1.实际上,有可能是A线程执行了n++,再C线程执行了n++,再B线程执行n++。
这里涉及到一个“锁”的问题,如果有多个线程同时操作一个对象,如果没有很好地保护该对象,会造成程序结果的不可预期(比如我们在每个线程的run方法中加入一个time.sleep(1),并同时输出线程名称,则我们会发现,输出会乱七八糟。因为可能我们的一个print语句只打印出一半的字符,这个线程就被暂停,执行另一个去了,所以我们看到的结果很乱),这种现象叫做“线程不安全”
线程锁
于是,Threading模块为我们提供了一个类,Threading.Lock,锁。我们创建一个该类对象,在线程函数执行前,“抢占”该锁,执行完成后,“释放”该锁,则我们确保了每次只有一个线程占有该锁。这时候对一个公共的对象进行操作,则不会发生线程不安全的现象了。
于是,我们把代码更改如下:
# coding : uft-8 __author__ = 'Phtih0n' import threading, time class MyThread(threading.Thread): def __init__(self): threading.Thread.__init__(self) def run(self): global n, lock time.sleep(1) if lock.acquire(): print n , self.name n += 1 lock.release() if "__main__" == __name__: n = 1 ThreadList = [] lock = threading.Lock() for i in range(1, 200): t = MyThread() ThreadList.append(t) for t in ThreadList: t.start() for t in ThreadList: t.join()
1 Thread-2
2 Thread-3
3 Thread-4
4 Thread-6
5 Thread-7
6 Thread-1
7 Thread-8
8 Thread-9
9 Thread-5
Process finished with exit code 0
我们看到,我们先建立了一个threading.Lock类对象lock,在run方法里,我们使用lock.acquire()获得了这个锁。此时,其他的线程就无法再获得该锁了,他们就会阻塞在“if lock.acquire()”这里,直到锁被另一个线程释放:lock.release()。
所以,if语句中的内容就是一块完整的代码,不会再存在执行了一半就暂停去执行别的线程的情况。所以最后结果是整齐的。
就如同在java中,我们使用synchronized关键字修饰一个方法,目的一样,让某段代码被一个线程执行时,不会打断跳到另一个线程中。
这是多线程占用一个公共对象时候的情况。如果多个线程要调用多个现象,而A线程调用A锁占用了A对象,B线程调用了B锁占用了B对象,A线程不能调用B对象,B线程不能调用A对象,于是一直等待。这就造成了线程“死锁”。
Threading模块中,也有一个类,RLock,称之为可重入锁。该锁对象内部维护着一个Lock和一个counter对象。counter对象记录了acquire的次数,使得资源可以被多次require。最后,当所有RLock被release后,其他线程才能获取资源。在同一个线程中,RLock.acquire可以被多次调用,利用该特性,可以解决部分死锁问题。
以上为个人经验,希望能给大家一个参考,也希望大家多多支持脚本之家。