python

关注公众号 jb51net

关闭
首页 > 脚本专栏 > python > Python 数据透视表

Python+Pandas实现数据透视表

作者:Python丁小杰

对于数据透视表,相信对于Excel比较熟悉的小伙伴都知道如何使用它。本文将利用Python Pandas实现数据透视表功能,感兴趣的可以学习一下

大家好,我是丁小杰。

对于数据透视表,相信对于 Excel 比较熟悉的小伙伴都知道如何使用它,并了解它的强大之处,而在pandas中要实现数据透视就要用到pivot_table了。

导入示例数据

首先导入演示的数据集。

import pandas as pd

df = pd.read_csv('销售目标.csv')
df.head()

参数说明

主要参数:

常用操作

使用pivot_table时必须要指定index,因为计算时要根据index进行聚合。

pd.pivot_table(df.head(20),
               index='订单日期',
               aggfunc=np.sum)

通过指定value来选择被聚合的列。

pd.pivot_table(df.head(20),
               values='销售目标',
               index='订单日期',
               aggfunc=np.sum)

当只指定index进行聚合时,其实用groupby可以实现同样的效果。

df.head(20).groupby(['订单日期'])['销售目标'].sum().reset_index()

添加columns参数,对列分组。

pd.pivot_table(df.head(10),
               values='销售目标',
               index=['订单日期', '类别'],
               columns='细分',
               aggfunc=np.sum)

对于上面结果中的空值,使用fill_value参数统一填充为0

pd.pivot_table(df.head(10),
               values='销售目标',
               index=['订单日期', '类别'],
               columns=['细分'],
               aggfunc=np.sum,
               fill_value=0)

现在按年份来统计销售数据,注意此时的aggfunc参数,当参数值包含列表时,在结果DataFrame中就会显示函数名称。

pd.pivot_table(df,
               values='销售目标',
               index=['年份', '类别'],
               columns='细分',
               aggfunc=[np.sum])

如果需要添加合计列,只需指定margins=True即可,同时根据需要指定合计名称。

pd.pivot_table(df,
               values='销售目标',
               index=['年份', '类别'],
               columns='细分',
               aggfunc=np.sum,
               margins=True,
              margins_name='合计')

当然与groupby类似,对于计算函数我们可以同时指定多种方式。

pd.pivot_table(df,
               values='销售目标',
               index=['年份', '类别'],
               columns=['细分'],
               aggfunc={'销售目标': [max, np.sum]},
               fill_value=0)

到此这篇关于Python+Pandas实现数据透视表的文章就介绍到这了,更多相关Python 数据透视表内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

您可能感兴趣的文章:
阅读全文