java

关注公众号 jb51net

关闭
首页 > 软件编程 > java > java收集器

java收集器Collector案例汇总

作者:这是一条海鱼

这篇文章主要介绍了java收集器Collector案例汇总,Collectors作为Stream的collect方法的参数,Collector是一个接口,它是一个可变的汇聚操作,更多相关介绍,需要的朋友可以参考下

一、收集器Collector

//T:表示流中每个元素的类型。 A:表示中间结果容器的类型。 R:表示最终返回的结果类型。
public interface Collector<T, A, R> {

    Supplier<A> supplier()//生成容器

    BiConsumer<A,T>    accumulator()//是添加元素

    BinaryOperator<A> combiner()//是合并容器

    Function<A,R>finisher()///是输出的结果

    Set<Collector.Characteristics>    characteristics()//返回Set的Collector.Characteristics指示此收集器的特征。

    //返回一个新的Collector由给定的描述supplier, accumulator,combiner,和finisher功能。
    static <T,A,R> Collector<T,A,R> of(Supplier<A> supplier, 
                                        BiConsumer<A,T> accumulator,
                                        BinaryOperator<A> combiner,
                                        Function<A,R> finisher,
                                        Collector.Characteristics... characteristics)


    //返回一个新的Collector由给定的描述supplier, accumulator和combiner功能。
    static <T,R> Collector<T,R,R>    of(Supplier<R> supplier, 
                                       BiConsumer<R,T> accumulator, 
                                       BinaryOperator<R> combiner, 
                                       Collector.Characteristics... characteristics)

}

二、收集器工厂Collectors

public final class Collectors extends Object

Collectors作为Stream的collect方法的参数,Collector是一个接口,它是一个可变的汇聚操作,将输入元素累计到一个可变的结果容器中;它会在所有元素都处理完毕后,将累积的结果转换为一个最终的表示(这是一个可选操作);

Collectors本身提供了关于Collector的常见汇聚实现,Collectors的内部类CollectorImpl实现了Collector接口,Collectors本身实际上是一个
工厂。

2.1 变成ConcurrentMap

//返回将Collector元素累积到其中 ConcurrentMap的并发函数,其键和值是将提供的映射函数应用于输入元素的结果。
static <T,K,U> Collector<T,?,ConcurrentMap<K,U>>    toConcurrentMap(Function<? super T,? extends K> keyMapper, 
                                                                      Function<? super T,? extends U> valueMapper)

//返回将Collector元素累积到其中 ConcurrentMap的并发函数,其键和值是将提供的映射函数应用于输入元素的结果。
static <T,K,U> Collector<T,?,ConcurrentMap<K,U>>    toConcurrentMap(Function<? super T,? extends K> keyMapper, 
                                                                      Function<? super T,? extends U> valueMapper, 
                                                                      BinaryOperator<U> mergeFunction)
//返回将Collector元素累积到其中 ConcurrentMap的并发函数,其键和值是将提供的映射函数应用于输入元素的结果。
static <T,K,U,M extends ConcurrentMap<K,U>> Collector<T,?,M>    toConcurrentMap(
                            Function<? super T,? extends K> keyMapper, 
                            Function<? super T,? extends U> valueMapper, 
                            BinaryOperator<U> mergeFunction, 
                            Supplier<M> mapSupplier
                     )

2.2 变成Map

static <T,K,U> Collector<T,?,Map<K,U>> toMap(Function<? super T,? extends K> keyMapper, 
                                             Function<? super T,? extends U> valueMapper)

//1、当key重复时,会抛出异常:java.lang.IllegalStateException: Duplicate key 
//2、当value为null时,会抛出异常:java.lang.NullPointerException

案例:

List<Person>integerList=newArrayList<>();
integerList.add(new Person("a",3));
integerList.add(new Person("b",3));
integerList.add(new Person("c",3));
integerList.add(new Person("d",2));
integerList.add(new Person("e",2));
integerList.add(new Person("f",2));
Mapmap=integerList.stream().collect(Collectors.toMap(Person::getName,Person::getAge));
System.out.println(map);//{a=3, b=3, c=3, d=2, e=2, f=2}
//第三个参数用在key值冲突的情况下:如果新元素产生的key在Map中已经出现过了,第三个参数就会定义解决的办法。
static <T,K,U> Collector<T,?,Map<K,U>> toMap(  Function<? super T,? extends K> keyMapper, 
                                               Function<? super T,? extends U> valueMapper, 
                                               BinaryOperator<U> mergeFunction)

案例:

List<Person> integerList = new ArrayList<>();
integerList.add(new Person("a",3));
integerList.add(new Person("b",3));
integerList.add(new Person("c",3));
integerList.add(new Person("d",2));
integerList.add(new Person("e",2));
integerList.add(new Person("e",3));

Collections.sort(integerList,comparator);
System.out.println(integerList);*/
Map map =integerList.stream().collect(Collectors.toMap(Person::getName,Person::getAge,(a,b)->a+b));
System.out.println(map);//{a=3, b=3, c=3, d=2, e=5}
//返回将Collector元素累积到 Map其键中的值,其值是将提供的映射函数应用于输入元素的结果。
static <T,K,U,M extends Map<K,U>> Collector<T,?,M>  toMap( Function<? super T,? extends K> keyMapper, 
                                                            Function<? super T,? extends U> valueMapper, 
                                                            BinaryOperator<U> mergeFunction, 
                                                            Supplier<M> mapSupplier)

2.3 变成Collection

static <T> Collector<T,?,List<T>> toList()
static <T> Collector<T,?,Set<T>>  toSet()  
//自定义 
static <T,C extends Collection<T>>  Collector<T,?,C>  toCollection(Supplier<C> collectionFactory)

案例:

List<Person> integerList = new ArrayList<>();
integerList.add(new Person("a",3));
integerList.add(new Person("b",3));
integerList.add(new Person("c",3));
integerList.add(new Person("d",2));
integerList.add(new Person("e",2));
integerList.add(new Person("e",3));
List<Integer> list= integerList.stream().map(Person::getAge).collect(Collectors.toList());
System.out.println(list);//[3, 3, 3, 2, 2, 3]
System.out.println(list.getClass());//class java.util.ArrayList
Set<Integer>set=integerList.stream().map(Person::getAge).collect(Collectors.toSet());
System.out.println(set);//[2, 3]
System.out.println(set.getClass());//class java.util.HashSet
LinkedList<Integer>linkedList=integerList.stream().map(Person::getAge).collect(Collectors.toCollection(LinkedList::new));
System.out.println(linkedList);//[3, 3, 3, 2, 2, 3]
System.out.println(linkedList.getClass());//class java.util.LinkedList

2.4 变成String

static Collector<CharSequence,?,String>    joining()
//delimiter分隔符连接
static Collector<CharSequence,?,String>    joining(CharSequence delimiter) 
//prefix前缀
//suffix后缀
static Collector<CharSequence,?,String>    joining(CharSequence delimiter, CharSequence prefix, CharSequence suffix)

案例:

List<Person> integerList = newArrayList<>();
integerList.add(new Person("a",3));
integerList.add(new Person("b",3));
integerList.add(new Person("c",3));
integerList.add(new Person("d",2));
integerList.add(new Person("e",2));
integerList.add(new Person("e",3));
Stringlist = integerList.stream().map(Person::getName).collect(Collectors.joining());
System.out.println(list);//abcdee
Stringset = integerList.stream().map(Person::getName).collect(Collectors.joining(","));
System.out.println(set);//a,b,c,d,e,e
StringlinkedList = integerList.stream().map(Person::getName).collect(Collectors.joining(",","(",")"));
System.out.println(linkedList);//(a,b,c,d,e,e)

2.5 计算最值

static <T> Collector<T,?,Optional<T>>  maxBy(Comparator<? super T> comparator) 
static <T> Collector<T,?,Optional<T>>  minBy(Comparator<? super T> comparator)

案例:

List<Person> integerList = new ArrayList<>();
integerList.add(new Person("a",1));
integerList.add(new Person("b",2));
integerList.add(new Person("c",3));
integerList.add(new Person("d",4));
integerList.add(new Person("e",5));
integerList.add(new Person("e",6));
Optional<Person> person = integerList.stream().collect(Collectors.maxBy(Comparator.comparing(Person::getAge)));
System.out.println(person.get());//Person{name='e',age='6'}

2.6 平均值

static <T> Collector<T,?,Double> averagingDouble(ToDoubleFunction<? super T> mapper)
static <T> Collector<T,?,Double> averagingInt(ToIntFunction<? super T> mapper)
static <T> Collector<T,?,Double> averagingLong(ToLongFunction<? super T> mapper)

案例:
 

List<Person> integerList = new ArrayList<>();
integerList.add(new Person("a",1));
integerList.add(new Person("b",1));
integerList.add(new Person("c",1));
integerList.add(new Person("d",1));
integerList.add(new Person("e",1));
integerList.add(new Person("e",1));
double number=integerList.stream().collect(Collectors.averagingDouble(Person::getAge));
System.out.println(number);//1.0

2.7 统计数据

static <T> Collector<T,?,DoubleSummaryStatistics> summarizingDouble(ToDoubleFunction<? super T> mapper)
static <T> Collector<T,?,IntSummaryStatistics>     summarizingInt(ToIntFunction<? super T> mapper) 
static <T> Collector<T,?,LongSummaryStatistics> summarizingLong(ToLongFunction<? super T> mapper)

DoubleSummaryStatistics,IntSummaryStatistics,LongSummaryStatistics 用于收集统计数据(如计数,最小值,最大值,总和和平均值)的状态对象。
此实现不是线程安全的。但是,Collectors.toXXXStatistics()在并行流上使用是安全的 ,因为并行实现Stream.collect() 提供了必要的分区,隔离和合并结果,以实现安全有效的并行执行。

他们的方法如下:

void accept(int value)//添加一个值
void combine(IntSummaryStatistics other)//将另一个的状态合并IntSummaryStatistics到这个状态中。
double getAverage()//算术平均值,如果没有记录值,则返回零。
long getCount()//返回记录的值的计数。
int getMax()//返回记录的最大值,或者Integer.MIN_VALUE没有记录值。
int getMin()//返回记录的最小值,或者Integer.MAX_VALUE没有记录值。
long getSum()//返回记录的值的总和,如果没有记录值,则返回零。
String toString()//返回对象的字符串表示形式。

案例:

List<Person> integerList = new ArrayList<>();
integerList.add(new Person("a",1));
integerList.add(new Person("b",2));
integerList.add(new Person("c",3));
integerList.add(new Person("d",4));
integerList.add(new Person("e",5));
integerList.add(new Person("e",6));

DoubleSummaryStatistics number = integerList.stream().collect(Collectors.summarizingDouble(Person::getAge));
System.out.println(number.getMax());//6
System.out.println(number.getMin());//1.0
System.out.println(number.getSum());//21.0
System.out.println(number.getAverage());//3.5
number.accept(100);
System.out.println(number.getMax());//100.0

2.8 求和

static <T> Collector<T,?,Double> summingDouble(ToDoubleFunction<? super T> mapper)    
static <T> Collector<T,?,Integer> summingInt(ToIntFunction<? super T> mapper)    
static <T> Collector<T,?,Long>    summingLong(ToLongFunction<? super T> mapper)

2.9 reducing函数

//op 缩减的函数
static <T> Collector<T,?,Optional<T>> reducing(BinaryOperator<T> op)     
//identity储存器初始值
static <T> Collector<T,?,T> reducing(T identity, BinaryOperator<T> op)
//mapper作用的数值
static <T,U> Collector<T,?,U>    reducing(U identity, Function<? super T,? extends U> mapper, BinaryOperator<U> op)

案例:

List<Person> integerList = new ArrayList<>();
integerList.add(new Person("a",1));
integerList.add(new Person("b",0));
integerList.add(new Person("c",0));
integerList.add(new Person("d",0));
integerList.add(new Person("e",0));
integerList.add(new Person("e",0));

Integernumber = integerList.stream().collect(Collectors.reducing(1,Person::getAge,(a,b)->a+b));
System.out.println(number);//2

2.10 计数

//返回Collector类型的接受元素,T用于计算输入元素的数量。
static <T> Collector<T,?,Long>    counting()

2.11 分组-变成map

//classifier分组依据函数
static <T,K> Collector<T,?,Map<K,List<T>>> groupingBy(Function<? super T,? extends K> classifier)

案例:

List<Person> integerList = new ArrayList<>();
integerList.add(new Person("a",1));
integerList.add(new Person("a",2));
integerList.add(new Person("a",3));
integerList.add(new Person("b",4));
integerList.add(new Person("b",5));
integerList.add(new Person("b",6));
    
Map map =i ntegerList.stream().collect(Collectors.groupingBy(Person::getName));
System.out.println(map);
{
a=[Person{name='a', age='1'}, Person{name='a', age='2'}, Person{name='a', age='3'}], 
b=[Person{name='b', age='4'}, Person{name='b', age='5'}, Person{name='b', age='6'}]
}
//downstream将小组内对象进行处理
static <T,K,A,D> Collector<T,?,Map<K,D>>    groupingBy(Function<? super T,? extends K> classifier, 
                                                        Collector<? super T,A,D> downstream)


//mapFactory中间操作
static <T,K,D,A,M extends Map<K,D>> Collector<T,?,M>  groupingBy(Function<? super T,? extends K> classifier, 
                                                                   Supplier<M> mapFactory, 
                                                                   Collector<? super T,A,D> downstream)

案例:

List<Person> integerList = newArrayList<>();
integerList.add(new Person("a",1));
integerList.add(new Person("a",2));
integerList.add(new Person("a",3));
integerList.add(new Person("b",4));
integerList.add(new Person("b",5));
integerList.add(new Person("b",6));
Map map= i ntegerList.stream()
                    .collect(Collectors.groupingBy(Person::getName,Collectors.reducing(0,Person::getAge,(a,b)->a+b)));
System.out.println(map);//{a=6, b=15}
Map map = integerList.stream()
                    .collect(Collectors.groupingBy(Person::getName,TreeMap::new,Collectors.reducing(0,Person::getAge,(a,b)->a+b)));
System.out.println(map.getClass());//classjava.util.TreeMap

2.12 分组-变成ConcurrentMap

static <T,K> Collector<T,?,ConcurrentMap<K,List<T>>>    groupingByConcurrent(Function<? super T,? extends K> classifier)
static <T,K,A,D> Collector<T,?,ConcurrentMap<K,D>>    groupingByConcurrent(Function<? super T,? extends K> classifier, 
                                                                           Collector<? super T,A,D> downstream)
static <T,K,A,D,M extends ConcurrentMap<K,D>> Collector<T,?,M> groupingByConcurrent(Function<? super T,? extends K> classifier, 
                                                                                       Supplier<M> mapFactory, 
                                                                                       Collector<? super T,A,D> downstream)

2.13 分割流

//predicate分区的依据
static <T> Collector<T,?,Map<Boolean,List<T>>>     partitioningBy(Predicate<? super T> predicate)

static <T,D,A> Collector<T,?,Map<Boolean,D>>    partitioningBy(Predicate<? super T> predicate, Collector<? super T,A,D> downstream)

2.14 收集器

通过在累积之前将映射函数应用于每个输入Collector元素,使类型的接受元素适应一个接受类型的U元素T。

static <T,U,A,R> Collector<T,?,R>    mapping(Function<? super T,? extends U> mapper, Collector<? super U,A,R> downstream)

案例:

List<Person> integerList = new ArrayList<>();
integerList.add(new Person("a",1));
integerList.add(new Person("a",2));
integerList.add(new Person("a",3));
integerList.add(new Person("b",4));
integerList.add(new Person("b",5));
integerList.add(new Person("b",6));

List list = integerList.stream().collect(Collectors.mapping(Person::getName,Collectors.toList()));

System.out.println(list);//[a, a, a, b, b, b]

2.15 收集之后继续做一些处理

static <T,A,R,RR> Collector<T,A,RR>    collectingAndThen(Collector<T,A,R> downstream, Function<R,RR> finisher)

到此这篇关于java收集器Collector详情的文章就介绍到这了,更多相关java收集器 内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

您可能感兴趣的文章:
阅读全文