python

关注公众号 jb51net

关闭
首页 > 脚本专栏 > python > kitti数据集自动驾驶

Python中使用kitti数据集实现自动驾驶(绘制出所有物体的行驶轨迹)

作者:秃头小苏

这篇文章主要介绍了Python中使用kitti数据集实现自动驾驶——绘制出所有物体的行驶轨迹,本次内容主要是画出kitti车的行驶的轨迹,需要的朋友可以参考下

本次内容主要是上周内容的延续,主要画出kitti车的行驶的轨迹

同样的,我们先来看看最终实现的效果:

视频

接下来就进入一步步的编码环节。。。 

1、利用IMU、GPS计算汽车移动距离和旋转角度

#定义计算GPS距离方法
def computer_great_circle_distance(lat1,lon1,lat2,lon2):
    delta_sigma = float(np.sin(lat1*np.pi/180)*np.sin(lat2*np.pi/180)+\
                        np.cos(lat1*np.pi/180)*np.cos(lat2*np.pi/180)*np.cos(lon1*np.pi/180-lon2*np.pi/180))
    return 6371000.0*np.arccos(np.clip(delta_sigma,-1,1))

#使用GPS计算距离
 gps_distance += [computer_great_circle_distance(imu_data.lat,imu_data.lon,prev_imu_data.lat,prev_imu_data.lon)]
IMU_COLUMN_NAMES = ['lat','lon','alt','roll','pitch','yaw','vn','ve','vf','vl','vu','ax','ay','az','af',
                    'al','au','wx','wy','wz','wf','wl','wu','posacc','velacc','navstat','numsats','posmode',
                    'velmode','orimode']
#获取IMU数据
imu_data = read_imu('/home/wsj/data/kitty/RawData/2011_09_26/2011_09_26_drive_0005_sync/oxts/data/%010d.txt'%frame)
#使用IMU计算距离
imu_distance += [0.1*np.linalg.norm(imu_data[['vf','vl']])]
import matplotlib.pyplot as plt
plt.figure(figsize=(20,10))
plt.plot(gps_distance, label='gps_distance')
plt.plot(imu_distance, label='imu_distance')
plt.legend()
plt.show()

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-CWY7VHDj-1640154002451)(C:\Users\WSJ\AppData\Roaming\Typora\typora-user-images\image-20211221163928106.png)]

显然,IMU计算的距离较为平滑。

2、画出kitti车的行驶轨迹

prev_imu_data = None
locations = []
for frame in range(150):
    imu_data = read_imu('/home/wsj/data/kitty/RawData/2011_09_26/2011_09_26_drive_0005_sync/oxts/data/%010d.txt'%frame)
    
    if prev_imu_data is not None:
        displacement = 0.1*np.linalg.norm(imu_data[['vf','vl']])
        yaw_change = float(imu_data.yaw-prev_imu_data.yaw)
        for i in range(len(locations)):
            x0, y0 = locations[i]
            x1 = x0 * np.cos(yaw_change) + y0 * np.sin(yaw_change) - displacement
            y1 = -x0 * np.sin(yaw_change) + y0 * np.cos(yaw_change)
            locations[i] = np.array([x1,y1])
            
    locations += [np.array([0,0])]           
    prev_imu_data =imu_data
plt.figure(figsize=(20,10))
plt.plot(np.array(locations)[:, 0],np.array(locations)[:, 1])

3、画出所有车辆的轨迹

class Object():
    def __init__(self, center):
        self.locations = deque(maxlen=20)
        self.locations.appendleft(center)
    def update(self, center, displacement, yaw):
        for i in range(len(self.locations)):
            x0, y0 = self.locations[i]
            x1 = x0 * np.cos(yaw_change) + y0 * np.sin(yaw_change) - displacement
            y1 = -x0 * np.sin(yaw_change) + y0 * np.cos(yaw_change)
            self.locations[i] = np.array([x1,y1])
        if center is not None:    
            self.locations.appendleft(center)
    def reset(self):
        self.locations = deque(maxlen=20)
#创建发布者        
loc_pub = rospy.Publisher('kitti_loc', MarkerArray, queue_size=10)

  #获取距离和旋转角度
        imu_data =  read_imu('/home/wsj/data/kitty/RawData/2011_09_26/2011_09_26_drive_0005_sync/oxts/data/%010d.txt'%frame)
        
        if prev_imu_data is None:
            for track_id in centers:
                tracker[track_id] = Object(centers[track_id])
        else:
            displacement = 0.1*np.linalg.norm(imu_data[['vf','vl']])
            yaw_change = float(imu_data.yaw - prev_imu_data.yaw)
            for track_id in centers: # for one frame id 
                if track_id in tracker:
                    tracker[track_id].update(centers[track_id], displacement, yaw_change)
                else:
                    tracker[track_id] = Object(centers[track_id])
            for track_id in tracker:# for whole ids tracked by prev frame,but current frame did not
                if track_id not in centers: # dont know its center pos
                    tracker[track_id].update(None, displacement, yaw_change)
        
        prev_imu_data = imu_data
        
def publish_loc(loc_pub, tracker, centers):
    marker_array = MarkerArray()
    for track_id in centers:
        marker = Marker()
        marker.header.frame_id = FRAME_ID
        marker.header.stamp = rospy.Time.now()
 
        marker.action = marker.ADD
        marker.lifetime = rospy.Duration(LIFETIME)
        marker.type = Marker.LINE_STRIP
        marker.id = track_id
        marker.color.r = 1.0
        marker.color.g = 1.0
        marker.color.b = 0.0
        marker.color.a = 1.0
        marker.scale.x = 0.2
    
        marker.points = []
        for p in tracker[track_id].locations:
            marker.points.append(Point(p[0], p[1], 0))
        marker_array.markers.append(marker)
    loc_pub.publish(marker_array)

到此这篇关于Python中使用kitti数据集实现自动驾驶——绘制出所有物体的行驶轨迹的文章就介绍到这了,更多相关kitti数据集自动驾驶内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

您可能感兴趣的文章:
阅读全文