python

关注公众号 jb51net

关闭
首页 > 脚本专栏 > python > python  opencv

python中opencv 直方图处理

作者:暴风雨中的白杨

这篇文章主要介绍了python中opencv 直方图处理,直方图从图像内部灰度级的角度对图像进行表述,直方图是图像内灰度值的统计特性与图像灰度值之间的函数,直方图统计图像内各个灰度级出现的次数,更多相关内容需要的小伙伴可以参考一下

直方图处理

直方图从图像内部灰度级的角度对图像进行表述从直方图的角度对图像进行处理,可以达到增强图像显示效果的目的。

直方图的含义

直方图是图像内灰度值的统计特性与图像灰度值之间的函数,直方图统计图像内各个灰度级出现的次数。从直方图的图形上观察,横坐标是图像中各像素点的灰度级,纵坐标是具有该灰度级(像素值)的像素个数。在绘制直方图时,将灰度级作为x轴处理,该灰度级出现的次数作为y轴处理

把左侧的直线图和右侧直方图都称为直方图

在实际处理中,图像直方图的x轴区间一般是[0, 255],对应的是8位位图的256个灰度级;y轴对应的是具有相应灰度级的像素点的个数。

归一化直方图: 在归一化直方图中,x轴仍然表示灰度级;y轴不再表示灰度级出现的次数,而是灰度级出现的频率。

灰度级出现的频率=灰度级出现的次数/总像素数在归一化直方图中,各个灰度级出现的频率之和为1。归一化直方图与直方图在外观上是一致的,只是y轴的标签不同而已。

在OpenCV的官网上,特别提出了要注意的三个概念:DIMS、BINS、RANGE

绘制直方图

Python的模块matplotlib.pyplot中的hist()函数能够方便地绘制直方图,通常采用该函数直接绘制直方图。除此以外,OpenCV中的cv2.calcHist()函数能够计算统计直方图,还可以在此基础上绘制图像的直方图。

使用Numpy绘制直方图

模块matplotlib.pyplot提供了一个类似于MATLAB绘图方式的框架,可以使用其中的matplotlib.pyplot.hist()函数来绘制直方图。此函数的作用是根据数据源和灰度级分组绘制直方图。

其基本语法格式为:

matplotlib.pyplot.hist(X, BINS)

函数ravel()的作用是将二维数组降维成一维数组。

例如:数组a

使用函数ravel()对a进行处理:

b = a.ravel()

使用hist()函数绘制一幅图像的直方图

import cv2
import matplotlib.pyplot as plt
o=cv2.imread("./img/hand1.png")
cv2.imshow("original", o)
plt.hist(o.ravel(),256)
plt.show()
cv2.waitKey()
cv2.destroyAllWindows()

使用函数hist()将一幅图像的灰度级划分为16组后,绘制该图像的直方图。

将灰度级划分为16组,即将灰度级划分为16个子集,对应的BINS值为16。

import cv2
import matplotlib.pyplot as plt
o=cv2.imread("./img/hand1.png")
plt.hist(o.ravel(),16)
plt.show()

使用OpenCV绘制直方图

OpenCV提供了函数cv2.calcHist()用来计算图像的统计直方图,该函数能统计各个灰度级的像素点个数。利用matplotlib.pyplot模块中的plot()函数,可以将函数cv2.calcHist()的统计结果绘制成直方图。

函数cv2.calcHist()用于统计图像直方图信息,其语法格式为:

hist = cv2.calcHist( images, channels, mask, histSize, ranges, accumulate )

函数中返回值及参数的含义为:

仅计算掩膜区域

**例子:**使用cv2.calcHist()函数计算一幅图像的统计直方图结果,并观察得到的统计直方图信息。

import cv2
import numpy as np
img=cv2.imread("./img/hand1.png")
hist = cv2.calcHist([img], [0], None, [256], [0,255])
print(type(hist))
print(hist.shape)
print(hist.size)
print(hist)

######
<class &#39;numpy.ndarray'>
(256, 1)
256
[[  88.]
 [  31.]
 [  48.]
 [  66.]
 ...

函数cv2.calcHist()返回值的数据类型为“ndarray”。该数据的shape为(256,1),说明其有256行1列。

该数据的size为256,说明有256个元素,分别对应着256个灰度级在图像内出现的次数。

plot()函数的使用:

使用matplotlib.pyplot模块内的plot()函数,可以将函数cv2.calcHist()的返回值绘制为图像直方图。

绘制统计直方图:

使用函数plot()将函数cv2.calcHist()的返回值绘制为直方图。

import cv2
import matplotlib.pyplot as plt
o=cv2.imread(&quot;./img/hand1.png&quot;)
histb = cv2.calcHist([o], [0], None, [256], [0,255])
plt.plot(histb, color=&#39;b')
plt.show()

使用函数plot()和函数cv2.calcHist(),将彩色图像各个通道的直方图绘制在一个窗口内。

import cv2
import matplotlib.pyplot as plt
o=cv2.imread(&quot;./img/hand1.png&quot;)
histb = cv2.calcHist([o], [0], None, [256], [0,255])
histg = cv2.calcHist([o], [1], None, [256], [0,255])
histr = cv2.calcHist([o], [2], None, [256], [0,255])
plt.plot(histb, color=&#39;b')
plt.plot(histg, color=&#39;g')
plt.plot(histr, color=&#39;r')
plt.show()

使用掩模绘制直方图

在函数cv2.calcHist()中,参数mask用于标识是否使用掩模图像。

当使用掩模图像获取直方图时,仅获取掩模参数mask指定区域的直方图。

import cv2
import numpy as np
mask=np.zeros([600,600], np.uint8)
mask[200:400,200:400]=255
cv2.imshow(&#39;mask', mask)
cv2.waitKey()
cv2.destroyAllWindows()

使用掩模绘制直方图:

绘制掩模图像时,首先将函数cv2.calcHist()的mask参数设置为掩模图像,得到掩模处理的直方图信息,再使用plot()函数完成直方图的绘制。

函数cv2.calcHist()的语法格式:

hist&nbsp;=&nbsp;cv2.calcHist(&nbsp;images,&nbsp;channels,&nbsp;mask,&nbsp;histSize,&nbsp;ranges,&nbsp;accumulate&nbsp;)

其中,mask参数就是掩模图像。

绘制掩模结果图像的直方图

首先构造一个掩模图像,然后使用函数cv2.calcHist()计算掩模结果图像的统计直方图信息,最后使用函数plot()绘制掩模图像的直方图。

掩模图像要保持与原始图像相等的大小, 使用参数image.shape表示构造与原始图像等大小的掩模图像。

import&nbsp;cv2
import&nbsp;numpy&nbsp;as&nbsp;np
import&nbsp;matplotlib.pyplot&nbsp;as&nbsp;plt
image=cv2.imread(&quot;./img/hand1.png&quot;,&nbsp;cv2.IMREAD_GRAYSCALE)
mask=np.zeros(image.shape,&nbsp;np.uint8)
mask[200:400,200:400]=255
histImage=cv2.calcHist([image],&nbsp;[0],&nbsp;None,&nbsp;[256],&nbsp;[0,255])
histMI=cv2.calcHist([image],&nbsp;[0],&nbsp;mask,&nbsp;[256],&nbsp;[0,255])
plt.plot(histImage,color=&quot;b&quot;)
plt.plot(histMI,color=&quot;g&quot;)
plt.show()

直方图均衡化

如果一幅图像拥有全部可能的灰度级,并且像素值的灰度均匀分布,那么这幅图像就具有高对比度和多变的灰度色调,灰度级丰富且覆盖范围较大。

在外观上,这样的图像具有更丰富的色彩,不会过暗或过亮。直方图均衡化的主要目的是将原始图像的灰度级均匀地映射到整个灰度级范围内,得到一个灰度级分布均匀的图像。这种均衡化,既实现了灰度值统计上的概率均衡,也实现了人类视觉系统(Human Visual System, HVS)上的视觉均衡。

直方图均衡化原理

直方图均衡化的算法主要包括两个步骤:

在此基础上,再利用人眼视觉达到直方图均衡化的目的。

在累计直方图的基础上,对原有灰度级空间进行转换。可以在原有范围内对灰度级实现均衡化,也可以在更广泛的灰度空间范围内对灰度级实现均衡化。

在原有范围内实现均衡化

用当前灰度级的累计概率乘以当前灰度级的最大值,得到新的灰度级,并作为均衡化的结果。

在更广泛的范围内实现均衡化

用当前灰度级的累计概率乘以更广泛范围灰度级的最大值,得到新的灰度级,并作为均衡化的结果。

通过如下两个步骤,可以让直方图达到均衡化的效果。

直方图均衡化使图像色彩更均衡、外观更清晰,也使图像更便于处理,它被广泛地应用在医学图像处理、车牌识别、人脸识别等领域。

直方图均衡化处理

OpenCV使用函数cv2.equalizeHist()实现直方图均衡化。

该函数的语法格式为:

dst&nbsp;=&nbsp;cv2.equalizeHist(&nbsp;src&nbsp;)

例子: 使用函数cv2.equalizeHist()实现直方图均衡化

#-----------导入使用的模块--------------- 
import&nbsp;cv2
import&nbsp;matplotlib.pyplot&nbsp;as&nbsp;plt
#-----------读取原始图像--------------- 
img&nbsp;=&nbsp;cv2.imread(&#39;./img/hand1.png', cv2.IMREAD_GRAYSCALE)
#-----------直方图均衡化处理--------------- 
equ&nbsp;=&nbsp;cv2.equalizeHist(img)
#-----------显示均衡化前后的图像--------------- 
cv2.imshow(&quot;original&quot;,&nbsp;img)
cv2.imshow(&quot;result&quot;,&nbsp;equ)
#-----------显示均衡化前后的直方图--------------- 
plt.figure(&quot;原始图像直方图&quot;)&nbsp;&nbsp;&nbsp;#构建窗口 
plt.hist(img.ravel(),256)
plt.figure(&quot;均衡化结果直方图&quot;)&nbsp;&nbsp;#构建新窗口 
plt.hist(equ.ravel(),256)
plt.show()
#----------等待释放窗口--------------------- 
cv2.waitKey()
cv2.destroyAllWindows()

语句“plt.figure("原始图像直方图")”用于构造名为“原始图像直方图”的新窗口。

均衡化是指综合考虑了统计概率和HVS的均衡化结果。

pyplot 模块介绍

matplotlib.pyplot模块提供了一个类似于MATLAB绘图方式的框架,可以使用其中的函数方便地绘制图形。

subplot 函数

模块matplotlib.pyplot提供了函数matplotlib.pyplot.subplot()用来向当前窗口内添加一个子窗口对象。该函数的语法格式为:

matplotlib.pyplot.subplot(nrows,&nbsp;ncols,&nbsp;index)

序号是从“1”开始而不是从“0”开始的。

如果所有参数都小于10,可以省略彼此之间的逗号,直接写三个数字。例如,subplot(2, 3, 4)可以直接表示为subplot(234)。

import&nbsp;cv2
import&nbsp;matplotlib.pyplot&nbsp;as&nbsp;plt
img&nbsp;=&nbsp;cv2.imread(&#39;./img/hand1.png', cv2.IMREAD_GRAYSCALE)
equ&nbsp;=&nbsp;cv2.equalizeHist(img)
plt.figure(&quot;subplot示例&quot;)
plt.subplot(121),&nbsp;plt.hist(img.ravel(),256)
plt.subplot(122),&nbsp;plt.hist(equ.ravel(),256)
plt.show()

imshow函数

模块matplotlib.pyplot提供了函数matplotlib.pyplot.imshow()用来显示图像。

其语法格式为:

matplotlib.pyplot.imshow(X,&nbsp;cmap=None)

使用函数matplotlib.pyplot.imshow()显示彩色图像

import&nbsp;cv2
import&nbsp;matplotlib.pyplot&nbsp;as&nbsp;plt
img&nbsp;=&nbsp;cv2.imread(&#39;./img/hand1.png')
imgRGB=cv2.cvtColor(img,&nbsp;cv2.COLOR_BGR2RGB)
plt.figure(&quot;显示结果&quot;)
plt.subplot(121)
plt.imshow(img),&nbsp;plt.axis(&#39;off')
plt.subplot(122)
plt.imshow(imgRGB),&nbsp;plt.axis(&#39;off')
plt.show()

使用函数matplotlib.pyplot.imshow()显示灰度图像。

尝试使用不同的形式显示灰度图像

import cv2
import matplotlib.pyplot as plt
o = cv2.imread(&#39;./img/hand1.png')
g=cv2.cvtColor(o, cv2.COLOR_BGR2GRAY)
plt.figure(&quot;灰度图像显示演示&quot;)
plt.subplot(221)
plt.imshow(o), plt.axis(&#39;off')
plt.subplot(222)
plt.imshow(o, cmap=plt.cm.gray), plt.axis(&#39;off')
plt.subplot(223)
plt.imshow(g), plt.axis(&#39;off')
plt.subplot(224)
plt.imshow(g, cmap=plt.cm.gray), plt.axis(&#39;off')
plt.show()

只有使用灰度图像作为参数,并且将色彩空间参数值设置为“cmap=plt.cm.gray”,灰度图像才被正常显示。

使用函数matplotlib.pyplot.imshow()以不同的参数形式显示灰度图像。

import cv2
import matplotlib.pyplot as plt
o = cv2.imread(&#39;./img/hand1.png')
g=cv2.cvtColor(o, cv2.COLOR_BGR2GRAY)
plt.figure(&quot;灰度图像显示演示&quot;)
plt.subplot(221); plt.imshow(g, cmap=plt.cm.gray)
plt.subplot(222); plt.imshow(g, cmap=plt.cm.gray_r)
plt.subplot(223); plt.imshow(g, cmap=&#39;gray')
plt.subplot(224); plt.imshow(g, cmap=&#39;gray_r')
plt.show()

色彩空间参数cmap的参数值“plt.cm.gray_r”及“gray_r”中的“r”是英文“reverse”的缩写,表示逆转的意思。

到此这篇关于python中opencv 直方图处理的文章就介绍到这了,更多相关python opencv 内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

您可能感兴趣的文章:
阅读全文