python

关注公众号 jb51net

关闭
首页 > 脚本专栏 > python > Pandas Dataframe合并去重

Python数据分析之 Pandas Dataframe合并和去重操作

作者:​ tigeriaf   ​

这篇文章主要介绍了Python数据分析之 Pandas Dataframe合并和去重操作,文章基于python的相关资料展开详细的内容介绍,需要的小伙伴可以参考一下

一、之 Pandas Dataframe合并

在数据分析中,避免不了要从多个数据集中取数据,那就避免不了要进行数据的合并,这篇文章就来介绍一下 Dataframe 对象的合并操作。

Pandas 提供了merge()方法来进行合并操作,使用语法如下:

pd.merge(left, right, how="inner", on=None, left_on=None, right_on=None,
left_index=False, right_index=False, sort=False)

常用的参数说明:

例如,对下面两个 DataFrame 对象执行合并操作:

import pandas as pd
data = {"name": ["Alice", "Bob", "Cindy", "David"], "age": [25, 23, 28, 24], "gender": ["woman", "man", "woman", "man"]}
df1 = pd.DataFrame(data)
df1

data = {"name": ["Alice", "Bob", "Cindy", "Emilie"], "city": ["beijing", "beijing", "jinan", "shanghai"]}
df2 = pd.DataFrame(data)
df2

使用name作为连接键:

merge_pd = pd.merge(df1, df2, on="name")
merge_pd

结果输出如下:

设置为左连接:

merge_pd = pd.merge(df1, df2, on="name", how="left")
merge_pd

结果输出如下:

在进行数据分析时,数据的质量可能并不理想,有可能包含一些重复数据,那我们就要进行数据的“去重”操作,删除重复的数据,保留唯一的数据项,从而提高数据集整体的精确度,同时也可以节省空间、提升读写性能等,接下来就来介绍一下 Pandas Dataframe 的去重操作。

二、去重操作

Pandas 提供了drop_duplicates()方法进行数据的去重操作,具体使用格式如下:

df.drop_duplicates(subset=None, keep="first", inplace=False, ignore_index=False)

参数说明如下:

例如,对下面 DataFrame 对象进行去重操作:

可以看到该DataFrame 对象中索引为1、3的行是重复的,下面进行去除:

保留第一次出现的重复项

df.drop_duplicates(inplace=True)
df

结果输出如下:

删除所有重复项

df.drop_duplicates(keep=False, inplace=True)
df

结果输出如下:

ignore_index参数使用

df.drop_duplicates(inplace=True, ignore_index=True)
df

ignore_index设置为True后,通过结果可以看到,行索引进行了重排。

当然drop_duplicates()方法也可以根据指定列名去重,给subset传递参数即可,例如根据name列进行去重:

df.drop_duplicates(subset=["name"], inplace=True)

到此这篇关于Python数据分析之 Pandas Dataframe合并和去重操作的文章就介绍到这了,更多相关Pandas Dataframe合并去重内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

您可能感兴趣的文章:
阅读全文