Python缺失值处理方法
作者: FizzH
这篇文章主要介绍了Python缺失值处理方法,文章围绕主题展开详细内容介绍,具有一定的参考价值,需要的小伙伴可以参考一下
前言:
前面python重复值处理得方法我们讲了重复值是怎么处理的,今天就来说说缺失值。缺失值主要分为机械原因和人为原因。机械原因就是存储器坏了,机器故障等等原因导致某段时间未能收集到数据。人为原因的情况种类就更多了,如刻意隐瞒等等。
先构建一个含有缺失值的DataFrame,如下:
import pandas as pd import numpy as np data = pd.DataFrame([[1,np.nan,3],[np.nan,5,np.nan]],columns = ['a','b','c']) print(data)
看出来了吗?np.nan就是NAN值,空值的意思。
在numpy中有一个函数可以用来查看空值,不对,是两个,isnull()和isna()这两函数。
我们分别来试试它们的效果:
import pandas as pd import numpy as np data = pd.DataFrame([[1,np.nan,3],[np.nan,5,np.nan]],columns = ['a','b','c']) data.isnull() data.isna()
可以看出,这两函数的作用就是判断数据是不是空值,如果是,就返回true,不是就是false。
通常,对空值的处理有两种方法,一种就是把空值删除,另外一种就是把它填上,我们先说第一种,删除空值,我们可以dropna()这一函数来把空值删除。要注意,它会把含有空值的整行都删掉。例如:
import pandas as pd import numpy as np data = pd.DataFrame([[1,np.nan,3],[np.nan,5,np.nan]],columns = ['a','b','c']) data.dropna()
上面的例子用了drop函数后,啥都没啦!
我们可以设置当每行空值多余2个时再删除(低于2个保留),这时候要用到dropna()的参数thresh。
补充空值的话有挺多的方法,有用均值补充,中位数补充等,我们要用到fillna()这一函数。例如,我们用均值来填充上文中的data,
代码如下:
import pandas as pd import numpy as np data = pd.DataFrame([[1,np.nan,3],[np.nan,5,np.nan]],columns = ['a','b','c']) data.fillna(data.mean())
代码运行的结果如下,可以看到空值都被对应列的均值所填充。
到此这篇关于Python缺失值处理方法的文章就介绍到这了,更多相关Python 缺失值 内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!