python

关注公众号 jb51net

关闭
首页 > 脚本专栏 > python > python卡尔曼滤波数据处理

卡尔曼滤波数据处理技巧通俗理解及python实现

作者:Bubbliiiing

这篇文章主要为大家介绍了卡尔曼滤波数据处理技巧的通俗理解及python实现,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪

学习前言

好久没用过arduino了,接下去要用arduino和超声波做个小实验,对于读取的模拟量肯定要进行滤波呀,不然这模拟量咋咋呼呼的怎么用

什么是卡尔曼滤波

先看看百度百科解释哈:卡尔曼滤波(Kalman filtering)是一种利用线性系统状态方程,通过系统输入输出观测数据,对系统状态进行最优估计的算法。由于观测数据中包括系统中的噪声和干扰的影响,所以最优估计也可看作是滤波过程。

重要的事说三遍:

还不如不看!

还不如不看!!

还不如不看!!!

其实大家并不需要把卡尔曼滤波当作一种很复杂的东西,用通俗的话来讲,卡尔曼滤波算法只是一种 滤波算法,它的功能就是 滤波,滤波的作用就是减少噪声与干扰对数据测量的影响。

卡尔曼滤波是怎么滤波的

接下来我会用一句话概括卡尔曼滤波的操作过程:

卡尔曼滤波是一种通过 历史数据、历史积累误差、当前测量数据与当前误差 联合计算出的当前被测量的最优预测值。

首先大家要先理解什么是当前被测量的最优预测值:

里面有两个重要的概念,分别是 最优 和 预测值 :

这意味着:

1、卡尔曼滤波的结果不是确确实实被测量出来的,而是利用公式计算出来的预测结果(并不是说预测结果就不好,测量还存在误差呢!);

2、最优是因为卡尔曼滤波考虑的非常多,它结合了四个参数对当前的被测量进行预测,所以效果比较好。

接下里大家要理解 历史数据、历史积累误差、当前测量数据与当前误差 的概念。

我会通过实例给大家讲讲这四个东西的概念。

卡尔曼滤波实例

假设我们现在在用超声波测距离!现在是t时间,我们需要用t-1时间的距离来估计t时间的距离。

设在t-1时刻,超声波的被测量的最优预测值为50cm,而到t-1时刻的积累误差3cm,你自己对预测的不确定误差为4cm,那么在t-1时刻,其总误差为(32+42)1/2=5cm。

在t时刻,超声波测得的实际值53cm,测量误差为2cm,那我们要怎么去相信上一时刻的预测值和这一时刻的实际值呢?因为二者都不是准的,我们可以利用误差来计算。

因此,我们结合 历史数据、历史积累误差、当前测量数据与当前误差 来计算:

所以当前的最优预测值为52.59。

卡尔曼滤波的python代码实现

import numpy as np
import matplotlib.pyplot as plt
# Q为这一轮的心里的预估误差
Q = 0.00001
# R为下一轮的测量误差
R = 0.1
# Accumulated_Error为上一轮的估计误差,具体呈现为所有误差的累计
Accumulated_Error = 1
# 初始旧值
kalman_adc_old = 0
SCOPE = 50
def kalman(ADC_Value):
    global kalman_adc_old
    global Accumulated_Error
    # 新的值相比旧的值差太大时进行跟踪
    if (abs(ADC_Value-kalman_adc_old)/SCOPE > 0.25):
        Old_Input = ADC_Value*0.382 + kalman_adc_old*0.618
    else:
        Old_Input = kalman_adc_old
    # 上一轮的 总误差=累计误差^2+预估误差^2
    Old_Error_All = (Accumulated_Error**2 + Q**2)**(1/2)
    # R为这一轮的预估误差
    # H为利用均方差计算出来的双方的相信度
    H = Old_Error_All**2/(Old_Error_All**2 + R**2)
    # 旧值 + 1.00001/(1.00001+0.1) * (新值-旧值)
    kalman_adc = Old_Input + H * (ADC_Value - Old_Input)
    # 计算新的累计误差
    Accumulated_Error = ((1 - H)*Old_Error_All**2)**(1/2)
    # 新值变为旧值
    kalman_adc_old = kalman_adc
    return kalman_adc
array = np.array([50]*200)
s = np.random.normal(0, 5, 200)
test_array = array + s
plt.plot(test_array)
adc=[]
for i in range(200):
    adc.append(kalman(test_array[i]))
plt.plot(adc)   
plt.plot(array)   
plt.show()

实验结果为:

以上就是卡尔曼滤波数据处理技巧通俗理解及python实现的详细内容,更多关于python卡尔曼滤波数据处理的资料请关注脚本之家其它相关文章!

您可能感兴趣的文章:
阅读全文