python

关注公众号 jb51net

关闭
首页 > 脚本专栏 > python > Python VTK 映射

Python VTK映射三维模型表面距离

作者:派大大大星

这篇文章主要介绍了Python VTK映射三维模型表面距离,通过如何使用VTK读取图片计算两个三维模型(stl)的表面距离,并将其距离值映射到模型上展开主题,需要的朋友可以参考一下

数据准备: 需要准备两个stl文件、Python需要安装vtk库

步骤一:数据读取 首先通过vtk.vtkSTLReader() 定义stl文件读取接口,再通过reader1.GetOutput() 就可以获得stl在vtk工作流的数据。

步骤二:去除重复点 通过vtk.vtkCleanPolyData() 可以去除模型中的重复点

步骤三:计算距离 使用 vtk.vtkDistancePolyDataFilter() ,使用上一步中过滤掉重复点后的数据作为输入。如distanceFilter.SetInputConnection(1, clean1.GetOutputPort()), 其中第一个参数就是输入数据的标号,从0开始计数;第二个参数就是输入的数据。我们将vtkDistancePolyDataFilter的输出到mapper就完成距离映射了。

步骤四:颜色配置 lut = vtk.vtkLookupTable() 相当于一个调色盘函数,通过对其参数改变可以,调整最终映射的颜色范围。 scalarBar = vtk.vtkScalarBarActor() 就是颜色条,按照前面的调色盘的结果将距离数值映射成颜色。

import vtk

input1 = vtk.vtkPolyData()
reader1 = vtk.vtkSTLReader()
reader1.SetFileName('model1.stl')
reader1.Update()
input1 = reader1.GetOutput()  # 读取模型A

input2 = vtk.vtkPolyData()
reader2 = vtk.vtkSTLReader()
reader2.SetFileName('model2.stl')
reader2.Update()
input2 = reader2.GetOutput()  # 读取模型B


# 数据合并,可以合并显示两个模型
clean1 = vtk.vtkCleanPolyData()
clean1.SetInputData(input1)

clean2 = vtk.vtkCleanPolyData()
clean2.SetInputData(input2)

distanceFilter = vtk.vtkDistancePolyDataFilter()

distanceFilter.SetInputConnection(1, clean1.GetOutputPort())
distanceFilter.SetInputConnection(0, clean2.GetOutputPort())
distanceFilter.SignedDistanceOff()
distanceFilter.Update()  # 计算距离
distanceFilter.GetOutputPort()
mapper = vtk.vtkPolyDataMapper()  # 配置mapper
mapper.SetInputConnection(distanceFilter.GetOutputPort())
mapper.SetScalarRange(  # 设置颜色映射范围
    distanceFilter.GetOutput().GetPointData().GetScalars().GetRange()[0],
    distanceFilter.GetOutput().GetPointData().GetScalars().GetRange()[1])
actor = vtk.vtkActor()
actor.SetMapper(mapper)
actor1 = vtk.vtkActor()
actor1.SetMapper(mapper)
lut = vtk.vtkLookupTable()
lut.SetHueRange(0.2, 0.7)  # 映射的颜色变换参数(自己调颜色)
# lut.SetAlphaRange(1.0, 1.0)
# lut.SetValueRange(1.0, 1.0)
# lut.SetSaturationRange(1.0, 1.0)
# lut.SetNumberOfTableValues(256)
mapper.SetLookupTable(lut)
mapper2 = vtk.vtkPolyDataMapper()
mapper2.SetInputData((distanceFilter.GetSecondDistanceOutput()))
mapper2.SetScalarRange(  # 设置颜色映射范围
    distanceFilter.GetSecondDistanceOutput().GetPointData().GetScalars().GetRange()[0],
    distanceFilter.GetSecondDistanceOutput().GetPointData().GetScalars().GetRange()[1])


actor2 = vtk.vtkActor()
actor2.SetMapper(mapper2)

scalarBar = vtk.vtkScalarBarActor()  # 设置color_bar
scalarBar.SetLookupTable(mapper.GetLookupTable())
scalarBar.SetTitle("SD(mm)")
scalarBar.SetNumberOfLabels(5)  # 设置要显示的刻度标签数。自己设定色带的位置
scalarBar.SetMaximumNumberOfColors(10)
# scalarBar.GetPositionCoordinate().SetCoordinateSystemToNormalizedViewport()
# scalarBar.GetPositionCoordinate().SetValue(0.01, 0.49)  # 参数越小越靠左,第二个参数越大越往上
# scalarBar.SetWidth(0.16)
# scalarBar.SetHeight(0.5)
# scalarBar.SetTextPositionToPrecedeScalarBar()  # 标题和刻度标记是否应在标量栏之前(文字会出现在条形左边)
# # 设置标题和条形之间的边距
# scalarBar.SetVerticalTitleSeparation(10)
# # 设置标题颜色
scalarBar.DrawTickLabelsOn()
scalarBar.GetTitleTextProperty().SetColor(0, 0, 0)
scalarBar.GetLabelTextProperty().SetColor(0, 0, 0)
arender = vtk.vtkRenderer()
arender.SetViewport(0, 0.0, 1, 1.0)
renWin = vtk.vtkRenderWindow()
renWin.AddRenderer(arender)
iren = vtk.vtkRenderWindowInteractor()
iren.SetRenderWindow(renWin)
style = vtk.vtkInteractorStyleTrackballActor()
iren.SetInteractorStyle(style)
aCamera = vtk.vtkCamera()
aCamera.SetViewUp(0, 0, -1)
aCamera.SetPosition(0, -1, 0)
aCamera.ComputeViewPlaneNormal()
aCamera.Azimuth(30.0)
aCamera.Elevation(30.0)
aCamera.Dolly(1.5)

arender.AddActor(actor)
# arender.AddActor(actor1)
arender.SetActiveCamera(aCamera)
arender.ResetCamera()
arender.SetBackground(1, 1, 1)
arender.ResetCameraClippingRange()
arender.AddActor2D(scalarBar)

renWin.Render()
iren.Initialize()
iren.Start()

结果示例:

1636355834(1).jpg

到此这篇关于Python VTK映射三维模型表面距离的文章就介绍到这了,更多相关Python VTK 映射内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

您可能感兴趣的文章:
阅读全文