FreeRTOS动态内存分配管理heap_2示例
作者:jiang_2018
这篇文章主要介绍了FreeRTOS动态内存分配管理heap_2示例,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步早日升职加薪
heap_2.c
内存堆管理
heap_2和heap_1一样是开辟一个大数组作为堆空间供用户使用,但是采用单项不循环链表来管理内存的分配释放,主要思想是用链表把内存块串起来,数据结构如下
/* Define the linked list structure. This is used to link free blocks in order of their size. */ typedef struct A_BLOCK_LINK { //指向下一个空闲内存块管理结构体 struct A_BLOCK_LINK *pxNextFreeBlock; /*<< The next free block in the list. */ //记录申请的字节数,包括链表占用所占字节数 size_t xBlockSize; /*<< The size of the free block. */ } BlockLink_t;
与引入链表管理而带来的相关变量如下
//链表结构体对齐后所占字节数 static const uint16_t heapSTRUCT_SIZE = ( ( sizeof ( BlockLink_t ) + ( portBYTE_ALIGNMENT - 1 ) ) & ~portBYTE_ALIGNMENT_MASK ); //2倍链表结构体对齐后所占字节数,这作为一个阈值,在分配时起作用 #define heapMINIMUM_BLOCK_SIZE ( ( size_t ) ( heapSTRUCT_SIZE * 2 ) ) /* Create a couple of list links to mark the start and end of the list. */ //定义2个局部静态全局结构体变量用于管理 static BlockLink_t xStart, xEnd;
还剩空闲字节数
/* Keeps track of the number of free bytes remaining, but says nothing about fragmentation. */ static size_t xFreeBytesRemaining = configADJUSTED_HEAP_SIZE;
分配
void *pvPortMalloc( size_t xWantedSize ) { BlockLink_t *pxBlock, *pxPreviousBlock, *pxNewBlockLink; static BaseType_t xHeapHasBeenInitialised = pdFALSE; void *pvReturn = NULL; //挂起调度器,防止函数重入 vTaskSuspendAll(); { /* If this is the first call to malloc then the heap will require initialisation to setup the list of free blocks. */ //第一次调用会初始化内存堆 if( xHeapHasBeenInitialised == pdFALSE ) { prvHeapInit(); xHeapHasBeenInitialised = pdTRUE; } /* The wanted size is increased so it can contain a BlockLink_t structure in addition to the requested amount of bytes. */ if( xWantedSize > 0 ) { //用户分配字节数+管理结构体占用字节数 xWantedSize += heapSTRUCT_SIZE; /* Ensure that blocks are always aligned to the required number of bytes. */ //总的字节数再做此字节对齐 if( ( xWantedSize & portBYTE_ALIGNMENT_MASK ) != 0 ) { /* Byte alignment required. */ xWantedSize += ( portBYTE_ALIGNMENT - ( xWantedSize & portBYTE_ALIGNMENT_MASK ) ); } } //待分配字节数大于0且小于总共堆字节数 if( ( xWantedSize > 0 ) && ( xWantedSize < configADJUSTED_HEAP_SIZE ) ) { /* Blocks are stored in byte order - traverse the list from the start (smallest) block until one of adequate size is found. */ //pxPreviousBlock指向头链表 pxPreviousBlock = &xStart; //pxBlock指向第一个开始空闲块 pxBlock = xStart.pxNextFreeBlock; //当pxBlock所管理的空闲块字节数小于待分配的 //且没有遍历到空闲块管理链表尾部则一直遍历 while( ( pxBlock->xBlockSize < xWantedSize ) && ( pxBlock->pxNextFreeBlock != NULL ) ) { //pxPreviousBlock这里是保存当前空闲块管理结构体,为了后面找到返回的内存地址 pxPreviousBlock = pxBlock; //指向下一个空闲块管理结构体 pxBlock = pxBlock->pxNextFreeBlock; } /* If we found the end marker then a block of adequate size was not found. */ //pxBlock不等于结尾说明找到符合大小的空闲块 if( pxBlock != &xEnd ) { /* Return the memory space - jumping over the BlockLink_t structure at its start. */ //pvReturn用作返回给用户,这里要偏移一个空闲块管理结构体占用内存大小 pvReturn = ( void * ) ( ( ( uint8_t * ) pxPreviousBlock->pxNextFreeBlock ) + heapSTRUCT_SIZE ); /* This block is being returned for use so must be taken out of the list of free blocks. */ //因为pxPreviousBlock->pxNextFreeBlock指向的空闲块被分配了, //所以要把pxPreviousBlock->pxNextFreeBlock指向的空闲块移除出去, //也就是pxPreviousBlock->pxNextFreeBlock指向pxBlock->pxNextFreeBlock //也就是跳过分配出去的那个块 pxPreviousBlock->pxNextFreeBlock = pxBlock->pxNextFreeBlock; /* If the block is larger than required it can be split into two. */ //这里判断, //如果将要分配出去的内存块大小xBlockSize比分配出去的还要大heapMINIMUM_BLOCK_SIZE(2倍管理结构体) //为了节约就把再分成2块,一块返回给用户, //一块构造一个新的空闲管理结构体后插入空闲链表 if( ( pxBlock->xBlockSize - xWantedSize ) > heapMINIMUM_BLOCK_SIZE ) { /* This block is to be split into two. Create a new block following the number of bytes requested. The void cast is used to prevent byte alignment warnings from the compiler. */ //注意这里xWantedSize是管理结构体和和真正需要字节数之和 //所以是在pxBlock基础上偏移xWantedSize作为新的管理结构体 pxNewBlockLink = ( void * ) ( ( ( uint8_t * ) pxBlock ) + xWantedSize ); /* Calculate the sizes of two blocks split from the single block. */ //pxNewBlockLink新的管理结构体大小 //是待分配pxBlock->xBlockSize-xWantedSize pxNewBlockLink->xBlockSize = pxBlock->xBlockSize - xWantedSize; //更新pxBlock->xBlockSize大小为xWantedSize pxBlock->xBlockSize = xWantedSize; /* Insert the new block into the list of free blocks. */ //把新构造的空闲管理结构体按xBlockSize大小升序插入到空闲链表 prvInsertBlockIntoFreeList( ( pxNewBlockLink ) ); } //还剩空闲字节数要减去分配出去的 xFreeBytesRemaining -= pxBlock->xBlockSize; } } traceMALLOC( pvReturn, xWantedSize ); }//解挂调度器 ( void ) xTaskResumeAll(); //如果定义了申请失败钩子函数,这里将执行 #if( configUSE_MALLOC_FAILED_HOOK == 1 ) { if( pvReturn == NULL ) { extern void vApplicationMallocFailedHook( void ); vApplicationMallocFailedHook(); } } #endif //返回给用户 return pvReturn; }
其中xFreeBytesRemaining
初始化如下
/* Keeps track of the number of free bytes remaining, but says nothing about fragmentation. */ static size_t xFreeBytesRemaining = configADJUSTED_HEAP_SIZE;
初始化内存堆
static void prvHeapInit( void ) { BlockLink_t *pxFirstFreeBlock; uint8_t *pucAlignedHeap; /* Ensure the heap starts on a correctly aligned boundary. */ //与heap1操作相同,确保portBYTE_ALIGNMENT字节对齐,实际使用的首址是pucAlignedHeap pucAlignedHeap = ( uint8_t * ) ( ( ( portPOINTER_SIZE_TYPE ) &ucHeap[ portBYTE_ALIGNMENT ] ) & ( ~( ( portPOINTER_SIZE_TYPE ) portBYTE_ALIGNMENT_MASK ) ) ); /* xStart is used to hold a pointer to the first item in the list of free blocks. The void cast is used to prevent compiler warnings. */ //空闲链表结构体头部初始化,pxNextFreeBlock指向实际使用的首址pucAlignedHeap xStart.pxNextFreeBlock = ( void * ) pucAlignedHeap; //空闲链表结构体头部没有可用内存,所以xBlockSize是0 xStart.xBlockSize = ( size_t ) 0; /* xEnd is used to mark the end of the list of free blocks. */ //空闲链表结构体尾部初始化,xBlockSize=configADJUSTED_HEAP_SIZE仅仅是为了后面的升序排列,不代表可以空闲字节数 xEnd.xBlockSize = configADJUSTED_HEAP_SIZE; //空闲链表结构体尾部初始化,pxNextFreeBlock指向NULL表示结尾 xEnd.pxNextFreeBlock = NULL; /* To start with there is a single free block that is sized to take up the entire heap space. */ //第一个空闲块,pxFirstFreeBlock,即上面xStart指向的pucAlignedHeap pxFirstFreeBlock = ( void * ) pucAlignedHeap; //可以空闲内存为configADJUSTED_HEAP_SIZE pxFirstFreeBlock->xBlockSize = configADJUSTED_HEAP_SIZE; //指向空闲链表结构体尾部 pxFirstFreeBlock->pxNextFreeBlock = &xEnd; }
初始化后的示意图如下
这里注意xBlockSize是包括管理结构体占用内存大小的(出来xStart和xEnd之外,这2个做排序用)
把新构造的结构体插入空闲链表
/* STATIC FUNCTIONS ARE DEFINED AS MACROS TO MINIMIZE THE FUNCTION CALL DEPTH. */ /* * Insert a block into the list of free blocks - which is ordered by size of * the block. Small blocks at the start of the list and large blocks at the end * of the list. */ #define prvInsertBlockIntoFreeList( pxBlockToInsert ) \ { \ BlockLink_t *pxIterator; \ size_t xBlockSize; \ \ //这里获得新构造的空闲结构体成员xBlockSize大小等下用于升序插入 xBlockSize = pxBlockToInsert->xBlockSize; \ \ /* Iterate through the list until a block is found that has a larger size */ \ /* than the block we are inserting. */ \ //从头开始找到要插入的位置 for( pxIterator = &xStart; pxIterator->pxNextFreeBlock->xBlockSize < xBlockSize; pxIterator = pxIterator->pxNextFreeBlock ) \ { \ /* There is nothing to do here - just iterate to the correct position. */ \ } \ \ /* Update the list to include the block being inserted in the correct */ \ /* position. */ \ //插入 pxBlockToInsert->pxNextFreeBlock = pxIterator->pxNextFreeBlock; \ pxIterator->pxNextFreeBlock = pxBlockToInsert; \ }
释放
释放就很简单了,就是偏移下地址后直接插入空闲链表
void vPortFree( void *pv ) { uint8_t *puc = ( uint8_t * ) pv; BlockLink_t *pxLink; if( pv != NULL ) { /* The memory being freed will have an BlockLink_t structure immediately before it. */ //偏移回地址 puc -= heapSTRUCT_SIZE; /* This unexpected casting is to keep some compilers from issuing byte alignment warnings. */ pxLink = ( void * ) puc; //挂起调度器 vTaskSuspendAll(); { /* Add this block to the list of free blocks. */ //插入空闲链表 prvInsertBlockIntoFreeList( ( ( BlockLink_t * ) pxLink ) ); //剩余空闲内存增加 xFreeBytesRemaining += pxLink->xBlockSize; traceFREE( pv, pxLink->xBlockSize ); }//解挂调度器 ( void ) xTaskResumeAll(); } }
还剩空闲字节数
size_t xPortGetFreeHeapSize( void ) { return xFreeBytesRemaining; }
适用范围、特点
适用于需要释放的场合,且每次申请释放的内存都是固定大小的,因为释放时不会合并相邻空闲内存块,所以如果每次申请释放都是随机的,到最后即使剩余内存大于要想要分配,由于有很多小的内存碎片导致最终分配失败。
以上就是FreeRTOS动态内存分配管理heap_2示例的详细内容,更多关于FreeRTOS动态内存管理heap_2的资料请关注脚本之家其它相关文章!