java

关注公众号 jb51net

关闭
首页 > 软件编程 > java > 分布式Netty源码分析

分布式Netty源码分析概览

作者:乒乓狂魔

这篇文章主要为大家介绍了分布式Netty源码分析概览,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪

服务器端demo

看下一个简单的Netty服务器端的例子

public static void main(String[] args){
	EventLoopGroup bossGroup=new NioEventLoopGroup(1);
	EventLoopGroup workerGroup = new NioEventLoopGroup();
	try {
		ServerBootstrap serverBootstrap=new ServerBootstrap();
		serverBootstrap.group(bossGroup,workerGroup)
			.channel(NioServerSocketChannel.class)
			.option(ChannelOption.SO_BACKLOG, 200)
			.childHandler(new ChannelInitializer<SocketChannel>() {
				@Override
				protected void initChannel(SocketChannel ch) throws Exception {
					ch.pipeline().addLast(new LengthFieldBasedFrameDecoder(80,0,4,0,4));
					ch.pipeline().addLast(new StringDecoder(Charset.forName("UTF-8")));
					ch.pipeline().addLast(new TcpServerHandler());
				}
			});
		ChannelFuture f=serverBootstrap.bind(8080).sync();
		f.channel().closeFuture().sync();
	} catch (InterruptedException e) {
		e.printStackTrace();
	}finally {  
        workerGroup.shutdownGracefully();  
        bossGroup.shutdownGracefully();  
    }  
}

先来简单说说上述遇到的类:

EventLoopGroup介绍

它主要包含2个方面的功能,注册Channel和执行一些Runnable任务。

功能1:先来看看注册Channel

即将Channel注册到Selector上,由Selector来调度Channel的相关事件,如读、写、Accept等事件。

而EventLoopGroup的设计是,它包含多个EventLoop(每一个EventLoop通常内部包含一个线程),在执行上述注册过程中是需要选择其中的一个EventLoop来执行上述注册行为,这里就出现了一个选择策略的问题,该选择策略接口是EventExecutorChooser,你也可以自定义一个实现。

从上面可以看到,EventLoopGroup做的工作大部分是一些总体性的工作如初始化上述多个EventLoop、EventExecutorChooser等,具体的注册Channel还是交给它内部的EventLoop来实现。

功能2:执行一些Runnable任务

EventLoopGroup继承了EventExecutorGroup,EventExecutorGroup也是EventExecutor的集合,EventExecutorGroup也是掌管着EventExecutor的初始化工作,EventExecutorGroup对于Runnable任务的执行也是选择内部中的一个EventExecutor来做具体的执行工作。

netty中很多任务都是异步执行的,一旦当前线程要对某个EventLoop执行相关操作,如注册Channel到某个EventLoop,如果当前线程和所要操作的EventLoop内部的线程不是同一个,则当前线程就仅仅向EventLoop提交一个注册任务,对外返回一个ChannelFuture。

总结:EventLoopGroup含有上述2种功能,它更多的是一个集合,但是具体的功能实现还是选择内部的一个item元素来执行相关任务。 这里的内部item元素通常即实现了EventLoop,又实现了EventExecutor,如NioEventLoop等

ChannelPipeline介绍

上述EventLoopGroup可以将一个Channel注册到内部的一个EventLoop的Selector上,然后对于这个Channel的相关读写等事件,Netty专门设计了一个ChannelPipeline来进行处理。每一个Channel都有一个ChannelPipeline来处理该Channel的读写等事件。

bind过程

上述serverBootstrap的bind过程如下:

至此,就完成了整个bind过程。一旦EventLoop内部的Selector检测到NioServerSocketChannel有新的连接到来的事件,则会交给NioServerSocketChannel的ChannelPipeline来处理,重点就是ChannelPipeline中的上述ServerBootstrapAcceptor,ServerBootstrapAcceptor做如下操作:

sync介绍

bind方法返回的是一个ChannelFuture,从上面我们也知道该过程是异步的,sync方法则是一直等待到该异步过程结束。

再看下f.channel().closeFuture().sync()这个方法

每一个ChannelFuture都是和一个Channel绑定的,所以可以通过ChannelFuture来获取对应绑定的Channel对象

每一个Channel对象都有一个CloseFuture closeFuture对象,上述closeFuture方法并不是去执行close方法而是获取到这个CloseFuture closeFuture对象,然后调用它的sync方法即等待这个Future的结束。一般正常情况下是不会调用这个Future的结束方法的,只是在上述过程或者其他过程出现问题的时候,如注册到EventLoop失败等才会去调用这个Feture的结束方法,所以正常情况下主线程会一直阻塞在CloseFuture closeFuture的sync方法上。

误区

上述的bossGroup的创建问题。

我们都知道bossGroup是用来accept连接,然后将连接绑定到workerGroup中的,一般情况下bossGroup设置线程数为1即可(基本只能为1),我们同时知道Ractor模型中可以使用多个Acceptor线程来执行accept操作,加快accept的速度。

如果你想加快accept的速度,想开启多线程来accept,这时候想设置bossGroup的线程数为多个的话,就大错特错了,是根本没效果的。

结合上面的原理,只有在bind端口的时候才会创建一个ServerSocketChannel,然后注册到bossGroup内部的一个EventLoop中,仍然是单线程负责ServerSocketChannel的accept工作,而bossGroup中的多线程仅仅是为bind多个端口服务的。

我们来看下tomcat是如何允许多个Acceptor线程来执行accept操作的:

没有使用Selector来执行accept操作,可以多线程并发执行上述serverSock的accept方法。

一旦使用了Selector,基本上就相当于将ServerSocketChannel serverSock绑定到了Selector所在线程上了(Selector不是线程安全的,只能在一个线程中被调度执行)

4 后续

下一篇就要详细描述下EventLoopGroup了。

以上就是分布式Netty源码分析概览的详细内容,更多关于分布式Netty源码分析的资料请关注脚本之家其它相关文章!

您可能感兴趣的文章:
阅读全文