java

关注公众号 jb51net

关闭
首页 > 软件编程 > java > Java雪花算法

Java实现雪花算法的示例代码

作者:指尖听戏

SnowFlow算法是Twitter推出的分布式id生成算法,主要核心思想就是利用64bit的long类型的数字作为全局的id。本文将用Java语言实现雪花算法,感兴趣的可以学习一下

一、介绍

SnowFlow算法是Twitter推出的分布式id生成算法,主要核心思想就是利用64bit的long类型的数字作为全局的id。在分布式系统中经常应用到,并且,在id中加入了时间戳的概念,基本上保持不重复,并且持续一种向上增加的方式。

在这64bit中,其中``第一个bit是不用的,然后用其中的41个bit作为毫秒数,用10bit作为工作机器id,12bit`作为序列号.具体如下图所示:

第一个部分:0,这个是个符号位,因为在二进制中第一个bit如果是1的话,那么都是负数,但是我们生成的这些id都是正数,所以第一个bit基本上都是0

第二个部分:41个bit,代表的是一个时间戳,41bit可以表示的数字多达$2^{41} $-1,也可以表示2^{41}-1个毫秒值,基本上差不多是69年。

第三个部分:5个bit 表示的是机房id。

第四个部分:5个bit 表示的是机器id。

第五个部分:12个bit 表示的是机房id,表示的序号,就是某个机房某台机器上这一毫秒内同时生成的 id 的序号,0000 00000000,如果是同一毫秒,那么这个雪花值就会递增

简单来说,你的某个服务假设要生成一个全局唯一 id,那么就可以发送一个请求给部署了 SnowFlake 算法的系统,由这个 SnowFlake 算法系统来生成唯一 id。

这个算法可以保证说,一个机房的一台机器上,在同一毫秒内,生成了一个唯一的 id。可能一个毫秒内会生成多个 id,但是有最后 12 个 bit 的序号来区分开来。

下面我们就来简单看下这个算法的代码实现部分。

总之就是用一个64bit的数字中各个bit位置来设置不同的标志位

二、代码实现

package com.lhh.utils;

/**
 * @author liuhuanhuan
 * @version 1.0
 * @date 2022/2/21 22:33
 * @describe Twitter推出的分布式唯一id算法
 */
public class SnowFlow {
    //因为二进制里第一个 bit 为如果是 1,那么都是负数,但是我们生成的 id 都是正数,所以第一个 bit 统一都是 0。

    //机器ID  2进制5位  32位减掉1位 31个
    private long workerId;
    //机房ID 2进制5位  32位减掉1位 31个
    private long datacenterId;
    //代表一毫秒内生成的多个id的最新序号  12位 4096 -1 = 4095 个
    private long sequence;
    //设置一个时间初始值    2^41 - 1   差不多可以用69年
    private long twepoch = 1585644268888L;
    //5位的机器id
    private long workerIdBits = 5L;
    //5位的机房id;。‘
    private long datacenterIdBits = 5L;
    //每毫秒内产生的id数 2 的 12次方
    private long sequenceBits = 12L;
    // 这个是二进制运算,就是5 bit最多只能有31个数字,也就是说机器id最多只能是32以内
    private long maxWorkerId = -1L ^ (-1L << workerIdBits);
    // 这个是一个意思,就是5 bit最多只能有31个数字,机房id最多只能是32以内
    private long maxDatacenterId = -1L ^ (-1L << datacenterIdBits);

    private long workerIdShift = sequenceBits;
    private long datacenterIdShift = sequenceBits + workerIdBits;
    private long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits;

    // -1L 二进制就是1111 1111  为什么?
    // -1 左移12位就是 1111  1111 0000 0000 0000 0000
    // 异或  相同为0 ,不同为1
    // 1111  1111  0000  0000  0000  0000
    // ^
    // 1111  1111  1111  1111  1111  1111
    // 0000 0000 1111 1111 1111 1111 换算成10进制就是4095
    private long sequenceMask = -1L ^ (-1L << sequenceBits);
    //记录产生时间毫秒数,判断是否是同1毫秒
    private long lastTimestamp = -1L;
    public long getWorkerId(){
        return workerId;
    }
    public long getDatacenterId() {
        return datacenterId;
    }
    public long getTimestamp() {
        return System.currentTimeMillis();
    }


    public SnowFlow() {
    }

    public SnowFlow(long workerId, long datacenterId, long sequence) {

        // 检查机房id和机器id是否超过31 不能小于0
        if (workerId > maxWorkerId || workerId < 0) {
            throw new IllegalArgumentException(
                    String.format("worker Id can't be greater than %d or less than 0",maxWorkerId));
        }

        if (datacenterId > maxDatacenterId || datacenterId < 0) {

            throw new IllegalArgumentException(
                    String.format("datacenter Id can't be greater than %d or less than 0",maxDatacenterId));
        }
        this.workerId = workerId;
        this.datacenterId = datacenterId;
        this.sequence = sequence;
    }

    // 这个是核心方法,通过调用nextId()方法,
    // 让当前这台机器上的snowflake算法程序生成一个全局唯一的id
    public synchronized long nextId() {
        // 这儿就是获取当前时间戳,单位是毫秒
        long timestamp = timeGen();
        // 判断是否小于上次时间戳,如果小于的话,就抛出异常
        if (timestamp < lastTimestamp) {

            System.err.printf("clock is moving backwards. Rejecting requests until %d.", lastTimestamp);
            throw new RuntimeException(
                    String.format("Clock moved backwards. Refusing to generate id for %d milliseconds",
                            lastTimestamp - timestamp));
        }

        // 下面是说假设在同一个毫秒内,又发送了一个请求生成一个id
        // 这个时候就得把seqence序号给递增1,最多就是4096
        if (timestamp == lastTimestamp) {

            // 这个意思是说一个毫秒内最多只能有4096个数字,无论你传递多少进来,
            //这个位运算保证始终就是在4096这个范围内,避免你自己传递个sequence超过了4096这个范围
            sequence = (sequence + 1) & sequenceMask;
            //当某一毫秒的时间,产生的id数 超过4095,系统会进入等待,直到下一毫秒,系统继续产生ID
            if (sequence == 0) {
                timestamp = tilNextMillis(lastTimestamp);
            }

        } else {
            sequence = 0;
        }
        // 这儿记录一下最近一次生成id的时间戳,单位是毫秒
        lastTimestamp = timestamp;
        // 这儿就是最核心的二进制位运算操作,生成一个64bit的id
        // 先将当前时间戳左移,放到41 bit那儿;将机房id左移放到5 bit那儿;将机器id左移放到5 bit那儿;将序号放最后12 bit
        // 最后拼接起来成一个64 bit的二进制数字,转换成10进制就是个long型
        return ((timestamp - twepoch) << timestampLeftShift) |
                (datacenterId << datacenterIdShift) |
                (workerId << workerIdShift) | sequence;
    }

    /**
     * 当某一毫秒的时间,产生的id数 超过4095,系统会进入等待,直到下一毫秒,系统继续产生ID
     * @param lastTimestamp
     * @return
     */
    private long tilNextMillis(long lastTimestamp) {

        long timestamp = timeGen();

        while (timestamp <= lastTimestamp) {
            timestamp = timeGen();
        }
        return timestamp;
    }
    //获取当前时间戳
    private long timeGen(){
        return System.currentTimeMillis();
    }

    /**
     *  main 测试类
     * @param args
     */
    public static void main(String[] args) {
//        System.out.println(1&4596);
//        System.out.println(2&4596);
//        System.out.println(6&4596);
//        System.out.println(6&4596);
//        System.out.println(6&4596);
//        System.out.println(6&4596);
        SnowFlow snowFlow = new SnowFlow(1, 1, 1);
        for (int i = 0; i < 22; i++) {
            System.out.println(snowFlow.nextId());
//		}
        }
    }
}

三、算法优缺点

优点:

(1)高性能高可用:生成时不依赖于数据库,完全在内存中生成。

(2)容量大:每秒中能生成数百万的自增ID。

(3)ID自增:存入数据库中,索引效率高。

缺点:

依赖与系统时间的一致性,如果系统时间被回调,或者改变,可能会造成id冲突或者重复(时钟重播造成的id重复问题)

到此这篇关于Java实现雪花算法的示例代码的文章就介绍到这了,更多相关Java雪花算法内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

您可能感兴趣的文章:
阅读全文