python

关注公众号 jb51net

关闭
首页 > 脚本专栏 > python > python DataFrame shift()

python DataFrame的shift()方法的使用

作者:侯小啾

在python数据分析中,可以使用shift()方法对DataFrame对象的数据进行位置的前滞、后滞移动,本文主要介绍了python DataFrame的shift()方法的使用,感兴趣的可以了解一下

在python数据分析中,可以使用shift()方法对DataFrame对象的数据进行位置的前滞、后滞移动。

语法

DataFrame.shift(periods=1, freq=None, axis=0)

移动滞后没有对应值的默认为NaN。

示例

period为正,无freq

import pandas as pd
pd.set_option('display.unicode.east_asian_width', True)
data = [51.0, 52.33, 51.21, 54.23, 56.78]
index = ['2022-2-28', '2022-3-1', '2022-3-2', '2022-3-3', '2022-3-4']
df = pd.DataFrame(data=data, index=index, columns=['close'])
df.index.name = 'date'
print(df)
print("=========================================")
df['昨收'] = df['close'].shift()
df['change'] = df['close'] - df['close'].shift()
print(df)

在这里插入图片描述

period为负,无freq

import pandas as pd
pd.set_option('display.unicode.east_asian_width', True)
data = [51.0, 52.33, 51.21, 54.23, 56.78]
index = ['2022-2-28', '2022-3-1', '2022-3-2', '2022-3-3', '2022-3-4']
index = pd.to_datetime(index)
index.name = 'date'

df = pd.DataFrame(data=data, index=index, columns=['昨收'])
print(df)
print("=========================================")
df['close'] = df['昨收'].shift(-1)
df['change'] = df['昨收'].shift(-1) - df['close']
print(df)

在这里插入图片描述

period为正,freq为正

import pandas as pd
import datetime
pd.set_option('display.unicode.east_asian_width', True)
data = [51.0, 52.33, 51.21, 54.23, 56.78]
index = ['2022-2-28', '2022-3-1', '2022-3-2', '2022-3-3', '2022-3-4']
index = pd.to_datetime(index)
index.name = 'date'
df = pd.DataFrame(data=data, index=index, columns=['close'])
print(df)
print("=========================================")
print(df.shift(periods=2, freq=datetime.timedelta(3)))

如图,索引列的时间序列数据滞后了6天。(二乘以三)

在这里插入图片描述

period为正,freq为负

import pandas as pd
import datetime
pd.set_option('display.unicode.east_asian_width', True)
data = [51.0, 52.33, 51.21, 54.23, 56.78]
index = ['2022-2-28', '2022-3-1', '2022-3-2', '2022-3-3', '2022-3-4']
index = pd.to_datetime(index)
index.name = 'date'
df = pd.DataFrame(data=data, index=index, columns=['close'])
print(df)
print("=========================================")
print(df.shift(periods=3, freq=datetime.timedelta(-3)))

如图,索引列的时间序列数据前滞了9天(三乘以负三)

在这里插入图片描述

period为负,freq为负

import pandas as pd
import datetime
pd.set_option('display.unicode.east_asian_width', True)
data = [51.0, 52.33, 51.21, 54.23, 56.78]
index = ['2022-2-28', '2022-3-1', '2022-3-2', '2022-3-3', '2022-3-4']
index = pd.to_datetime(index)
index.name = 'date'
df = pd.DataFrame(data=data, index=index, columns=['close'])
print(df)
print("=========================================")
print(df.shift(periods=-3, freq=datetime.timedelta(-3)))

如图,索引列的时间序列数据滞后了9天(负三乘以负三)

在这里插入图片描述

 到此这篇关于python DataFrame的shift()方法的使用的文章就介绍到这了,更多相关python DataFrame shift() 内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

您可能感兴趣的文章:
阅读全文