python

关注公众号 jb51net

关闭
首页 > 脚本专栏 > python > pytorch实现图像识别

pytorch实现图像识别(实战)

作者:AI AX AT

这篇文章主要介绍了pytorch实现图像识别(实战),文章主要分享实现代码,但也具有一定的参考价值,需要的小伙伴可以才可以一下,希望对你有所帮助

1. 代码讲解

1.1 导库

import os.path
from os import listdir
import numpy as np
import pandas as pd
from PIL import Image
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.nn import AdaptiveAvgPool2d
from torch.utils.data.sampler import SubsetRandomSampler
from torch.utils.data import Dataset
import torchvision.transforms as transforms
from sklearn.model_selection import train_test_split

1.2 标准化、transform、设置GPU

device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
normalize = transforms.Normalize(
   mean=[0.485, 0.456, 0.406],
   std=[0.229, 0.224, 0.225]
)
transform = transforms.Compose([transforms.ToTensor(), normalize])  # 转换

1.3 预处理数据

class DogDataset(Dataset):
# 定义变量
    def __init__(self, img_paths, img_labels, size_of_images):  
        self.img_paths = img_paths
        self.img_labels = img_labels
        self.size_of_images = size_of_images

# 多少长图片
    def __len__(self):
        return len(self.img_paths)

# 打开每组图片并处理每张图片
    def __getitem__(self, index):
        PIL_IMAGE = Image.open(self.img_paths[index]).resize(self.size_of_images)
        TENSOR_IMAGE = transform(PIL_IMAGE)
        label = self.img_labels[index]
        return TENSOR_IMAGE, label


print(len(listdir(r'C:\Users\AIAXIT\Desktop\DeepLearningProject\Deep_Learning_Data\dog-breed-identification\train')))
print(len(pd.read_csv(r'C:\Users\AIAXIT\Desktop\DeepLearningProject\Deep_Learning_Data\dog-breed-identification\labels.csv')))
print(len(listdir(r'C:\Users\AIAXIT\Desktop\DeepLearningProject\Deep_Learning_Data\dog-breed-identification\test')))

train_paths = []
test_paths = []
labels = []
# 训练集图片路径
train_paths_lir = r'C:\Users\AIAXIT\Desktop\DeepLearningProject\Deep_Learning_Data\dog-breed-identification\train'
for path in listdir(train_paths_lir):
    train_paths.append(os.path.join(train_paths_lir, path))  
# 测试集图片路径
labels_data = pd.read_csv(r'C:\Users\AIAXIT\Desktop\DeepLearningProject\Deep_Learning_Data\dog-breed-identification\labels.csv')
labels_data = pd.DataFrame(labels_data)  
# 把字符标签离散化,因为数据有120种狗,不离散化后面把数据给模型时会报错:字符标签过多。把字符标签从0-119编号
size_mapping = {}
value = 0
size_mapping = dict(labels_data['breed'].value_counts())
for kay in size_mapping:
    size_mapping[kay] = value
    value += 1
# print(size_mapping)
labels = labels_data['breed'].map(size_mapping)
labels = list(labels)
# print(labels)
print(len(labels))
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(train_paths, labels, test_size=0.2)

train_set = DogDataset(X_train, y_train, (32, 32))
test_set = DogDataset(X_test, y_test, (32, 32))

train_loader = torch.utils.data.DataLoader(train_set, batch_size=64)
test_loader = torch.utils.data.DataLoader(test_set, batch_size=64)

1.4 建立模型

class LeNet(nn.Module):
    def __init__(self):
        super(LeNet, self).__init__()

        self.features = nn.Sequential(
            nn.Conv2d(in_channels=3, out_channels=6, kernel_size=5),  
            nn.ReLU(),
            nn.AvgPool2d(kernel_size=2, stride=2),
            nn.Conv2d(in_channels=6, out_channels=16, kernel_size=5),
            nn.ReLU(),
            nn.AvgPool2d(kernel_size=2, stride=2)
        )
        self.classifier = nn.Sequential(
            nn.Linear(16 * 5 * 5, 120),
            nn.ReLU(),
            nn.Linear(120, 84),
            nn.ReLU(),
            nn.Linear(84, 120)
        )

    def forward(self, x):
        batch_size = x.shape[0]
        x = self.features(x)
        x = x.view(batch_size, -1)
        x = self.classifier(x)
        return x


model = LeNet().to(device)
criterion = nn.CrossEntropyLoss().to(device)
optimizer = optim.Adam(model.parameters())
TRAIN_LOSS = []  # 损失
TRAIN_ACCURACY = []  # 准确率

1.5 训练模型

def train(epoch):
    model.train()
    epoch_loss = 0.0 # 损失
    correct = 0  # 精确率
    for batch_index, (Data, Label) in enumerate(train_loader):
    # 扔到GPU中
        Data = Data.to(device)
        Label = Label.to(device)
        output_train = model(Data)
    # 计算损失
        loss_train = criterion(output_train, Label)
        epoch_loss = epoch_loss + loss_train.item()
    # 计算精确率
        pred = torch.max(output_train, 1)[1]
        train_correct = (pred == Label).sum()
        correct = correct + train_correct.item()
    # 梯度归零、反向传播、更新参数
        optimizer.zero_grad()
        loss_train.backward()
        optimizer.step()
    print('Epoch: ', epoch, 'Train_loss: ', epoch_loss / len(train_set), 'Train correct: ', correct / len(train_set))

1.6 测试模型

和训练集差不多。

def test():
    model.eval()
    correct = 0.0
    test_loss = 0.0
    with torch.no_grad():
        for Data, Label in test_loader:
            Data = Data.to(device)
            Label = Label.to(device)
            test_output = model(Data)
            loss = criterion(test_output, Label)
            pred = torch.max(test_output, 1)[1]
            test_correct = (pred == Label).sum()
            correct = correct + test_correct.item()
            test_loss = test_loss + loss.item()
    print('Test_loss: ', test_loss / len(test_set), 'Test correct: ', correct / len(test_set))

1.7结果

epoch = 10
for n_epoch in range(epoch):
    train(n_epoch)
test()

到此这篇关于pytorch实现图像识别(实战)的文章就介绍到这了,更多相关pytorch实现图像识别内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

您可能感兴趣的文章:
阅读全文