python

关注公众号 jb51net

关闭
首页 > 脚本专栏 > python > Python XGBoost

Python机器学习应用之基于天气数据集的XGBoost分类篇解读

作者:柚子味的羊

XGBoost是一个优化的分布式梯度增强库,旨在实现高效,灵活和便携。它在 Gradient Boosting 框架下实现机器学习算法。XGBoost提供并行树提升(也称为GBDT,GBM),可以快速准确地解决许多数据科学问题

一、XGBoost

XGBoost并不是一种模型,而是一个可供用户轻松解决分类、回归或排序问题的软件包。

1 XGBoost的优点

2 XGBoost的缺点

二、实现过程

1 数据集

天气数据集 提取码:1234

2 实现

#%%导入基本库
import numpy as np 
import pandas as pd

## 绘图函数库
import matplotlib.pyplot as plt
import seaborn as sns
#读取数据
data=pd.read_csv('D:\Python\ML\data\XGBtrain.csv')

通过variable explorer查看样本数据

也可以使用head()或tail()函数,查看样本前几行和后几行。不难看出,数据集中含有NAN,代表数据中存在缺失值,可能是在数据采集或者处理过程中产生的一种错误,此处采用-1将缺失值进行填充,还有其他的填充方法:

注:在数据的前期处理中,一定要注意对缺失值的处理。前期数据处理的结果将会严重影响后面是否可能得到合理的结果

data=data.fillna(-1)
#利用value_counts()函数查看训练集标签的数量(Raintomorrow=no)
print(pd.Series(data['RainTomorrow']).value_counts())
data_des=data.describe()

填充后:

#%%#可视化数据(特征值包括数字特征和非数字特征)
numerical_features = [x for x in data.columns if data[x].dtype == np.float]
category_features = [x for x in data.columns if data[x].dtype != np.float and x != 'RainTomorrow']
#%% 选取三个特征与标签组合的散点可视化
sns.pairplot(data=data[['Rainfall','Evaporation','Sunshine'] + ['RainTomorrow']], diag_kind='hist', hue= 'RainTomorrow')
plt.show()

#%%每个特征的箱图
i=0
for col in data[numerical_features].columns:
    if col != 'RainTomorrow':
        plt.subplot(2,8,i+1)
        sns.boxplot(x='RainTomorrow', y=col, saturation=0.5, palette='pastel', data=data)
        plt.title(col)
        i=i+1
plt.show()

#%%非数字特征
tlog = {}
for i in category_features:
    tlog[i] = data[data['RainTomorrow'] == 'Yes'][i].value_counts()
flog = {}
for i in category_features:
    flog[i] = data[data['RainTomorrow'] == 'No'][i].value_counts()
#%%不同地区下雨情况
plt.figure(figsize=(20,10))
plt.subplot(1,2,1)
plt.title('RainTomorrow')
sns.barplot(x = pd.DataFrame(tlog['Location']).sort_index()['Location'], y = pd.DataFrame(tlog['Location']).sort_index().index, color = "red")
plt.subplot(1,2,2)
plt.title('Not RainTomorrow')
sns.barplot(x = pd.DataFrame(flog['Location']).sort_index()['Location'], y = pd.DataFrame(flog['Location']).sort_index().index, color = "blue")
plt.show()

#%%
plt.figure(figsize=(20,5))
plt.subplot(1,2,1)
plt.title('RainTomorrow')
sns.barplot(x = pd.DataFrame(tlog['RainToday'][:2]).sort_index()['RainToday'], y = pd.DataFrame(tlog['RainToday'][:2]).sort_index().index, color = "red")
plt.subplot(1,2,2)
plt.title('Not RainTomorrow')
sns.barplot(x = pd.DataFrame(flog['RainToday'][:2]).sort_index()['RainToday'], y = pd.DataFrame(flog['RainToday'][:2]).sort_index().index, color = "blue")
plt.show()

XGBoost无法处理字符串类型的数据,需要将字符串数据转化成数值

#%%对离散变量进行编码
## 把所有的相同类别的特征编码为同一个值
def get_mapfunction(x):
    mapp = dict(zip(x.unique().tolist(),
         range(len(x.unique().tolist()))))
    def mapfunction(y):
        if y in mapp:
            return mapp[y]
        else:
            return -1
    return mapfunction
#将非数字特征离散化
for i in category_features:
    data[i] = data[i].apply(get_mapfunction(data[i]))
#%%利用XGBoost进行训练与预测
## 为了正确评估模型性能,将数据划分为训练集和测试集,并在训练集上训练模型,在测试集上验证模型性能。
from sklearn.model_selection import train_test_split

## 选择其类别为0和1的样本 (不包括类别为2的样本)
data_target_part = data['RainTomorrow']
data_features_part = data[[x for x in data.columns if x != 'RainTomorrow']]

## 测试集大小为20%, 80%/20%分
x_train, x_test, y_train, y_test = train_test_split(data_features_part, data_target_part, test_size = 0.2, random_state = 2020)

#%%导入XGBoost模型
from xgboost.sklearn import XGBClassifier
## 定义 XGBoost模型 
clf = XGBClassifier()
# 在训练集上训练XGBoost模型
clf.fit(x_train, y_train)
#%% 在训练集和测试集上分布利用训练好的模型进行预测
train_predict = clf.predict(x_train)
test_predict = clf.predict(x_test)
from sklearn import metrics

## 利用accuracy(准确度)【预测正确的样本数目占总预测样本数目的比例】评估模型效果
print('The accuracy of the XGBoost is:',metrics.accuracy_score(y_train,train_predict))
print('The accuracy of the XGBoost is:',metrics.accuracy_score(y_test,test_predict))

## 查看混淆矩阵 (预测值和真实值的各类情况统计矩阵)
confusion_matrix_result = metrics.confusion_matrix(test_predict,y_test)
print('The confusion matrix result:\n',confusion_matrix_result)

# 利用热力图对于结果进行可视化
plt.figure(figsize=(8, 6))
sns.heatmap(confusion_matrix_result, annot=True, cmap='Blues')
plt.xlabel('Predicted labels')
plt.ylabel('True labels')
plt.show()

#%%利用XGBoost进行特征选择:
#XGboost中可以用属性feature_importances_去查看特征的重要度。
sns.barplot(y=data_features_part.columns,x=clf.feature_importances_)

初次之外,我们还可以使用XGBoost中的下列重要属性来评估特征的重要性:

#利用XGBoost的其他重要参数评估特征的重要性
from sklearn.metrics import accuracy_score
from xgboost import plot_importance

def estimate(model,data):
    #sns.barplot(data.columns,model.feature_importances_)
    ax1=plot_importance(model,importance_type="gain")
    ax1.set_title('gain')
    ax2=plot_importance(model, importance_type="weight")
    ax2.set_title('weight')
    ax3 = plot_importance(model, importance_type="cover")
    ax3.set_title('cover')
    plt.show()
def classes(data,label,test):
    model=XGBClassifier()
    model.fit(data,label)
    ans=model.predict(test)
    estimate(model, data)
    return ans
 
ans=classes(x_train,y_train,x_test)
pre=accuracy_score(y_test, ans)
print('acc=',accuracy_score(y_test,ans))

XGBoost中包括但不限于下列对模型影响较大的参数:

调节模型参数的方法有贪心算法、网格调参、贝叶斯调参等。这里我们采用网格调参,它的基本思想是穷举搜索:在所有候选的参数选择中,通过循环遍历,尝试每一种可能性,表现最好的参数就是最终的结果

#%%通过调参获得更好的效果
## 从sklearn库中导入网格调参函数
from sklearn.model_selection import GridSearchCV

## 定义参数取值范围
learning_rate = [0.1, 0.3, 0.6]
subsample = [0.8, 0.9]
colsample_bytree = [0.6, 0.8]
max_depth = [3,5,8]

parameters = { 'learning_rate': learning_rate,
              'subsample': subsample,
              'colsample_bytree':colsample_bytree,
              'max_depth': max_depth}
model = XGBClassifier(n_estimators = 50)

## 进行网格搜索
clf = GridSearchCV(model, parameters, cv=3, scoring='accuracy',verbose=1,n_jobs=-1)
clf = clf.fit(x_train, y_train)
#%%网格搜索后的参数
print(clf.best_params_)

#%% 在训练集和测试集上分别利用最好的模型参数进行预测
## 定义带参数的 XGBoost模型 
clf = XGBClassifier(colsample_bytree = 0.6, learning_rate = 0.3, max_depth= 8, subsample = 0.9)
# 在训练集上训练XGBoost模型
clf.fit(x_train, y_train)

train_predict = clf.predict(x_train)
test_predict = clf.predict(x_test)

## 利用accuracy(准确度)【预测正确的样本数目占总预测样本数目的比例】评估模型效果
print('The accuracy of the Logistic Regression is:',metrics.accuracy_score(y_train,train_predict))
print('The accuracy of the Logistic Regression is:',metrics.accuracy_score(y_test,test_predict))

## 查看混淆矩阵 (预测值和真实值的各类情况统计矩阵)
confusion_matrix_result = metrics.confusion_matrix(test_predict,y_test)
print('The confusion matrix result:\n',confusion_matrix_result)

# 利用热力图对于结果进行可视化
plt.figure(figsize=(8, 6))
sns.heatmap(confusion_matrix_result, annot=True, cmap='Blues')
plt.xlabel('Predicted labels')
plt.ylabel('True labels')
plt.show()

三、Keys

XGBoost的重要参数

886~~

到此这篇关于Python机器学习应用之基于天气数据集的XGBoost分类篇解读的文章就介绍到这了,更多相关Python XGBoost内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

您可能感兴趣的文章:
阅读全文