python

关注公众号 jb51net

关闭
首页 > 脚本专栏 > python > python中apply函数

python中apply函数详情

作者:sorrythanku 

这篇文章主要介绍了python中apply函数详情,该函数最有用的是第一个参数,这个参数是函数,相当于C/C++的函数指针,更多详细内容,需要的小伙伴可以参考下面文章内容

函数原型:

DataFrame.apply(func, axis=0, broadcast=False, raw=False, reduce=None, args=(), **kwds)

对指定列进行操作:

data=np.arange(0,16).reshape(4,4)
data=pd.DataFrame(data,columns=['0','1','2','3'])
def f(x):
    return x-1
print(data)
print(data.ix[:,['1','2']].apply(f))
    0   1   2   3
0   0   1   2   3
1   4   5   6   7
2   8   9  10  11
3  12  13  14  15
    1   2
0   0   1
1   4   5
2   8   9
3  12  13

对行操作:

data=np.arange(0,16).reshape(4,4)
data=pd.DataFrame(data,columns=['0','1','2','3'])
def f(x):
    return x-1
print(data)
print(data.ix[[0,1],:].apply(f))
    0   1   2   3
0   0   1   2   3
1   4   5   6   7
2   8   9  10  11
3  12  13  14  15
   0  1  2  3
0 -1  0  1  2
1  3  4  5  6

整体对列操作:

data=np.arange(0,16).reshape(4,4)
data=pd.DataFrame(data,columns=['0','1','2','3'])
def f(x):
    return x.max()
print(data)
print(data.apply(f))
    0   1   2   3
0   0   1   2   3
1   4   5   6   7
2   8   9  10  11
3  12  13  14  15

0    12
1    13
2    14
3    15
dtype: int64

整体对行操作:

data=np.arange(0,16).reshape(4,4)
data=pd.DataFrame(data,columns=['0','1','2','3'])
def f(x):
    return x.max()
print(data)
print(data.apply(f,axis=1))
    0   1   2   3
0   0   1   2   3
1   4   5   6   7
2   8   9  10  11
3  12  13  14  15
0     3
1     7
2    11
3    15
dtype: int64

到此这篇关于python中apply函数详情的文章就介绍到这了,更多相关python中apply函数内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

您可能感兴趣的文章:
阅读全文