python

关注公众号 jb51net

关闭
首页 > 脚本专栏 > python > TensorFlow训练网络

详解TensorFlow训练网络两种方式

作者:学姐带你玩AI

本文主要介绍了TensorFlow训练网络两种方式,一种是基于tensor(array),另外一种是迭代器,文中通过示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下

TensorFlow训练网络有两种方式,一种是基于tensor(array),另外一种是迭代器

两种方式区别是:

方式一:通过迭代器

IMAGE_SIZE = 1000

# step1:加载数据集
(train_images, train_labels), (val_images, val_labels) = tf.keras.datasets.mnist.load_data()

# step2:将图像归一化
train_images, val_images = train_images / 255.0, val_images / 255.0

# step3:设置训练集大小
train_images = train_images[:IMAGE_SIZE]
val_images = val_images[:IMAGE_SIZE]
train_labels = train_labels[:IMAGE_SIZE]
val_labels = val_labels[:IMAGE_SIZE]

# step4:将图像的维度变为(IMAGE_SIZE,28,28,1)
train_images = tf.expand_dims(train_images, axis=3)
val_images = tf.expand_dims(val_images, axis=3)

# step5:将图像的尺寸变为(32,32)
train_images = tf.image.resize(train_images, [32, 32])
val_images = tf.image.resize(val_images, [32, 32])

# step6:将数据变为迭代器
train_loader = tf.data.Dataset.from_tensor_slices((train_images, train_labels)).batch(32)
val_loader = tf.data.Dataset.from_tensor_slices((val_images, val_labels)).batch(IMAGE_SIZE)

# step5:导入模型
model = LeNet5()

# 让模型知道输入数据的形式
model.build(input_shape=(1, 32, 32, 1))

# 结局Output Shape为 multiple
model.call(Input(shape=(32, 32, 1)))

# step6:编译模型
model.compile(optimizer='adam',
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
              metrics=['accuracy'])

# 权重保存路径
checkpoint_path = "./weight/cp.ckpt"

# 回调函数,用户保存权重
save_callback = tf.keras.callbacks.ModelCheckpoint(filepath=checkpoint_path,
                                                   save_best_only=True,
                                                   save_weights_only=True,
                                                   monitor='val_loss',
                                                   verbose=0)

EPOCHS = 11

for epoch in range(1, EPOCHS):
    # 每个批次训练集误差
    train_epoch_loss_avg = tf.keras.metrics.Mean()
    # 每个批次训练集精度
    train_epoch_accuracy = tf.keras.metrics.SparseCategoricalAccuracy()
    # 每个批次验证集误差
    val_epoch_loss_avg = tf.keras.metrics.Mean()
    # 每个批次验证集精度
    val_epoch_accuracy = tf.keras.metrics.SparseCategoricalAccuracy()

    for x, y in train_loader:
        history = model.fit(x,
                            y,
                            validation_data=val_loader,
                            callbacks=[save_callback],
                            verbose=0)

        # 更新误差,保留上次
        train_epoch_loss_avg.update_state(history.history['loss'][0])
        # 更新精度,保留上次
        train_epoch_accuracy.update_state(y, model(x, training=True))

        val_epoch_loss_avg.update_state(history.history['val_loss'][0])
        val_epoch_accuracy.update_state(next(iter(val_loader))[1], model(next(iter(val_loader))[0], training=True))

    # 使用.result()计算每个批次的误差和精度结果
    print("Epoch {:d}: trainLoss: {:.3f}, trainAccuracy: {:.3%} valLoss: {:.3f}, valAccuracy: {:.3%}".format(epoch,
                                                                                                             train_epoch_loss_avg.result(),
                                                                                                             train_epoch_accuracy.result(),
                                                                                                             val_epoch_loss_avg.result(),
                                                                                                             val_epoch_accuracy.result()))

方式二:适用model.fit()进行分批训练

import model_sequential

(train_images, train_labels), (test_images, test_labels) = tf.keras.datasets.mnist.load_data()

# step2:将图像归一化
train_images, test_images = train_images / 255.0, test_images / 255.0

# step3:将图像的维度变为(60000,28,28,1)
train_images = tf.expand_dims(train_images, axis=3)
test_images = tf.expand_dims(test_images, axis=3)

# step4:将图像尺寸改为(60000,32,32,1)
train_images = tf.image.resize(train_images, [32, 32])
test_images = tf.image.resize(test_images, [32, 32])

# step5:导入模型
# history = LeNet5()
history = model_sequential.LeNet()

# 让模型知道输入数据的形式
history.build(input_shape=(1, 32, 32, 1))
# history(tf.zeros([1, 32, 32, 1]))

# 结局Output Shape为 multiple
history.call(Input(shape=(32, 32, 1)))
history.summary()

# step6:编译模型
history.compile(optimizer='adam',
                loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
                metrics=['accuracy'])

# 权重保存路径
checkpoint_path = "./weight/cp.ckpt"

# 回调函数,用户保存权重
save_callback = tf.keras.callbacks.ModelCheckpoint(filepath=checkpoint_path,
                                                   save_best_only=True,
                                                   save_weights_only=True,
                                                   monitor='val_loss',
                                                   verbose=1)
# step7:训练模型
history = history.fit(train_images,
                      train_labels,
                      epochs=10,
                      batch_size=32,
                      validation_data=(test_images, test_labels),
                      callbacks=[save_callback])

到此这篇关于详解TensorFlow训练网络两种方式的文章就介绍到这了,更多相关TensorFlow训练网络内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家! 

您可能感兴趣的文章:
阅读全文