python

关注公众号 jb51net

关闭
首页 > 脚本专栏 > python > Python Unet 语义分割模型

Python深度学习之Unet 语义分割模型(Keras)

作者:__不想写代码__

这篇文章主要介绍了语义分割任务中Unet一个有意思的模型-Keras。Keras是一个由Python编写的开源人工神经网络库,可进行深度学习模型的设计、调试、评估、应用和可视化。感兴趣的小伙伴快来跟随小编一起学习一下吧

前言

最近由于在寻找方向上迷失自我,准备了解更多的计算机视觉任务重的模型。看到语义分割任务重Unet一个有意思的模型,我准备来复现一下它。

一、什么是语义分割

语义分割任务,如下图所示:

简而言之,语义分割任务就是将图片中的不同类别,用不同的颜色标记出来,每一个类别使用一种颜色。常用于医学图像,卫星图像任务。

那如何做到将像素点上色呢?

其实语义分割的输出和图像分类网络类似,图像分类类别数是一个一维的one hot 矩阵。例如:三分类的[0,1,0]。

语义分割任务最后的输出特征图 是一个三维结构,大小与原图类似,通道数就是类别数。 如下图(图片来源于知乎)所示:

其中通道数是类别数,每个通道所标记的像素点,是该类别在图像中的位置,最后通过argmax 取每个通道有用像素 合成一张图像,用不同颜色表示其类别位置。 语义分割任务其实也是分类任务中的一种,他不过是对每一个像素点进行细分,找到每一个像素点所述的类别。 这就是语义分割任务啦~

下面我们来复现 unet 模型

二、Unet

1.基本原理

什么是Unet,它的网络结构如下图所示:

整个网络是一个“U” 的形状,Unet 网络可以分成两部分,上图红色方框中是特征提取部分,和其他卷积神经网络一样,都是通过堆叠卷积提取图像特征,通过池化来压缩特征图。蓝色方框中为图像还原部分(这样称它可能不太专业,大家理解就好),通过上采样和卷积来来将压缩的图像进行还原。特征提取部分可以使用优秀的网络,例如:Resnet50,VGG等。

注意:由于 Resnet50和VGG 网络太大。本文将使用Mobilenet 作为主干特征提取网络。为了方便理解Unet,本文将使用自己搭建的一个mini_unet 去帮祝大家理解。为了方便计算,复现过程会把压缩后的特征图上采样和输入的特征图一样大小。

代码github地址: 一直上不去

先上传到码云: https://gitee.com/Boss-Jian/unet

2.mini_unet

mini_unet 是搭建来帮助大家理解语义分割的网络流程,并不能作为一个优秀的模型完成语义分割任务,来看一下代码的实现:

from keras.layers import Input,Conv2D,Dropout,MaxPooling2D,Concatenate,UpSampling2D
from numpy import pad
from keras.models import Model
def unet_mini(n_classes=21,input_shape=(224,224,3)):

    img_input = Input(shape=input_shape)

   
    #------------------------------------------------------
    # #encoder 部分
    #224,224,3 - > 112,112,32
    conv1 = Conv2D(32,(3,3),activation='relu',padding='same')(img_input)
    conv1 = Dropout(0.2)(conv1)
    conv1 = Conv2D(32,(3,3),activation='relu',padding='same')(conv1)
    pool1 = MaxPooling2D((2,2),strides=2)(conv1)


    #112,112,32 -> 56,56,64
    conv2 = Conv2D(64,(3,3),activation='relu',padding='same')(pool1)
    conv2 = Dropout(0.2)(conv2)
    conv2 = Conv2D(64,(3,3),activation='relu',padding='same')(conv2)
    pool2 = MaxPooling2D((2,2),strides=2)(conv2)


    #56,56,64 -> 56,56,128
    conv3 = Conv2D(128,(3,3),activation='relu',padding='same')(pool2)
    conv3 = Dropout(0.2)(conv3)
    conv3 = Conv2D(128,(3,3),activation='relu',padding='same')(conv3)

    #-------------------------------------------------
    # decoder 部分
    #56,56,128 -> 112,112,64 
    up1 = UpSampling2D(2)(conv3)
    #112,112,64 -> 112,112,64+128
    up1 = Concatenate(axis=-1)([up1,conv2])
    #  #112,112,192 -> 112,112,64
    conv4  = Conv2D(64,(3,3),activation='relu',padding='same')(up1)
    conv4  = Dropout(0.2)(conv4)
    conv4  = Conv2D(64,(3,3),activation='relu',padding='same')(conv4)

    #112,112,64 - >224,224,64
    up2 = UpSampling2D(2)(conv4)
    #224,224,64 -> 224,224,64+32
    up2 = Concatenate(axis=-1)([up2,conv1])
    # 224,224,96 -> 224,224,32
    conv5 =  Conv2D(32,(3,3),activation='relu',padding='same')(up2)
    conv5  = Dropout(0.2)(conv5)
    conv5  = Conv2D(32,(3,3),activation='relu',padding='same')(conv5)
    
    o = Conv2D(n_classes,1,padding='same')(conv5)

    return Model(img_input,o,name="unet_mini")

if __name__=="__main__":
    model = unet_mini()
    model.summary()

mini_unet 通过encoder 部分将 224x224x3的图像 变成 112x112x64 的特征图,再通过 上采样方法将特征图放大到 224x224x32。最后通过卷积:

o = Conv2D(n_classes,1,padding='same')(conv5)

将特征图的通道数调节成和类别数一样。

3. Mobilenet_unet

Mobilenet_unet 是使用Mobinet 作为主干特征提取网络,并且加载预训练权重来提升特征提取的能力。decoder 的还原部分和上面一致,下面是Mobilenet_unet 的网络结构:

from keras.models import *
from keras.layers import *
import keras.backend as K
import keras
from tensorflow.python.keras.backend import shape

IMAGE_ORDERING =  "channels_last"# channel last
def relu6(x):
    return K.relu(x, max_value=6)


def _conv_block(inputs, filters, alpha, kernel=(3, 3), strides=(1, 1)):
   
    channel_axis = 1 if IMAGE_ORDERING == 'channels_first' else -1
    filters = int(filters * alpha)
    x = ZeroPadding2D(padding=(1, 1), name='conv1_pad',
                      data_format=IMAGE_ORDERING)(inputs)
    x = Conv2D(filters, kernel, data_format=IMAGE_ORDERING,
               padding='valid',
               use_bias=False,
               strides=strides,
               name='conv1')(x)
    x = BatchNormalization(axis=channel_axis, name='conv1_bn')(x)
    return Activation(relu6, name='conv1_relu')(x)


def _depthwise_conv_block(inputs, pointwise_conv_filters, alpha,
                          depth_multiplier=1, strides=(1, 1), block_id=1):

    channel_axis = 1 if IMAGE_ORDERING == 'channels_first' else -1
    pointwise_conv_filters = int(pointwise_conv_filters * alpha)

    x = ZeroPadding2D((1, 1), data_format=IMAGE_ORDERING,
                      name='conv_pad_%d' % block_id)(inputs)
    x = DepthwiseConv2D((3, 3), data_format=IMAGE_ORDERING,
                        padding='valid',
                        depth_multiplier=depth_multiplier,
                        strides=strides,
                        use_bias=False,
                        name='conv_dw_%d' % block_id)(x)
    x = BatchNormalization(
        axis=channel_axis, name='conv_dw_%d_bn' % block_id)(x)
    x = Activation(relu6, name='conv_dw_%d_relu' % block_id)(x)

    x = Conv2D(pointwise_conv_filters, (1, 1), data_format=IMAGE_ORDERING,
               padding='same',
               use_bias=False,
               strides=(1, 1),
               name='conv_pw_%d' % block_id)(x)
    x = BatchNormalization(axis=channel_axis,
                           name='conv_pw_%d_bn' % block_id)(x)
    return Activation(relu6, name='conv_pw_%d_relu' % block_id)(x)

def get_mobilnet_eocoder(input_shape=(224,224,3),weights_path=""):

    # 必须是32 的倍数
    assert input_shape[0] % 32 == 0
    assert input_shape[1] % 32 == 0

    alpha = 1.0
    depth_multiplier = 1

    img_input = Input(shape=input_shape)
    #(None, 224, 224, 3) ->(None, 112, 112, 64)
    x = _conv_block(img_input, 32, alpha, strides=(2, 2))
    x = _depthwise_conv_block(x, 64, alpha, depth_multiplier, block_id=1)
    f1 = x
 
    #(None, 112, 112, 64) -> (None, 56, 56, 128)
    x = _depthwise_conv_block(x, 128, alpha, depth_multiplier,
                              strides=(2, 2), block_id=2)
    x = _depthwise_conv_block(x, 128, alpha, depth_multiplier, block_id=3)
    f2 = x
   #(None, 56, 56, 128) -> (None, 28, 28, 256)
    x = _depthwise_conv_block(x, 256, alpha, depth_multiplier,
                              strides=(2, 2), block_id=4)
    x = _depthwise_conv_block(x, 256, alpha, depth_multiplier, block_id=5)
    f3 = x
    # (None, 28, 28, 256) ->  (None, 14, 14, 512)
    x = _depthwise_conv_block(x, 512, alpha, depth_multiplier,
                              strides=(2, 2), block_id=6)
    x = _depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=7)
    x = _depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=8)
    x = _depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=9)
    x = _depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=10)
    x = _depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=11)
    f4 = x
    # (None, 14, 14, 512) -> (None, 7, 7, 1024)
    x = _depthwise_conv_block(x, 1024, alpha, depth_multiplier,
                              strides=(2, 2), block_id=12)
    x = _depthwise_conv_block(x, 1024, alpha, depth_multiplier, block_id=13)
    f5 = x
    # 加载预训练模型
    if weights_path!="":
        Model(img_input, x).load_weights(weights_path, by_name=True, skip_mismatch=True)
    # f1: (None, 112, 112, 64)
    # f2: (None, 56, 56, 128)
    # f3: (None, 28, 28, 256)
    # f4: (None, 14, 14, 512)
    # f5: (None, 7, 7, 1024)
    return img_input, [f1, f2, f3, f4, f5]


def mobilenet_unet(num_classes=2,input_shape=(224,224,3)):
    
    #encoder 
    img_input,levels = get_mobilnet_eocoder(input_shape=input_shape,weights_path="model_data\mobilenet_1_0_224_tf_no_top.h5")

    [f1, f2, f3, f4, f5] = levels

    # f1: (None, 112, 112, 64)
    # f2: (None, 56, 56, 128)
    # f3: (None, 28, 28, 256)
    # f4: (None, 14, 14, 512)
    # f5: (None, 7, 7, 1024)

    #decoder
    #(None, 14, 14, 512) - > (None, 14, 14, 512)
    o = f4
    o = ZeroPadding2D()(o)
    o = Conv2D(512, (3, 3), padding='valid' , activation='relu' , data_format=IMAGE_ORDERING)(o)
    o = BatchNormalization()(o)

    #(None, 14, 14, 512) ->(None,28,28,256)
    o = UpSampling2D(2)(o)
    o = Concatenate(axis=-1)([o,f3])
    o = ZeroPadding2D()(o)
    o = Conv2D(256, (3, 3), padding='valid' , activation='relu' , data_format=IMAGE_ORDERING)(o)
    o = BatchNormalization()(o)
    # None,28,28,256)->(None,56,56,128)
    o = UpSampling2D(2)(o)
    o = Concatenate(axis=-1)([o,f2])
    o = ZeroPadding2D()(o)
    o = Conv2D(128, (3, 3), padding='valid' , activation='relu' , data_format=IMAGE_ORDERING)(o)
    o = BatchNormalization()(o)
    #(None,56,56,128) ->(None,112,112,64)
    o = UpSampling2D(2)(o)
    o = Concatenate(axis=-1)([o,f1])
    o = ZeroPadding2D()(o)
    o = Conv2D(128, (3, 3), padding='valid' , activation='relu' , data_format=IMAGE_ORDERING)(o)
    o = BatchNormalization()(o)
    #(None,112,112,64) -> (None,112,112,num_classes)

    # 再上采样 让输入和出处图片大小一致
    o = UpSampling2D(2)(o)
    o = ZeroPadding2D()(o)
    o = Conv2D(64, (3, 3), padding='valid' , activation='relu' , data_format=IMAGE_ORDERING)(o)
    o = BatchNormalization()(o)

    o = Conv2D(num_classes, (3, 3), padding='same',
               data_format=IMAGE_ORDERING)(o)

    return Model(img_input,o)

if __name__=="__main__":
    mobilenet_unet(input_shape=(512,512,3)).summary()


特征图的大小变化,以及代码含义都已经注释在代码里了。大家仔细阅读吧

4.数据加载部分

import math
import os
from random import shuffle

import cv2
import keras
import numpy as np
from PIL import Image
#-------------------------------
# 将图片转换为 rgb
#------------------------------
def cvtColor(image):
    if len(np.shape(image)) == 3 and np.shape(image)[2] == 3:
        return image 
    else:
        image = image.convert('RGB')
        return image 
#-------------------------------
# 图片归一化 0~1
#------------------------------
def preprocess_input(image):
    image = image / 127.5 - 1
    return image
#---------------------------------------------------
#   对输入图像进行resize
#---------------------------------------------------
def resize_image(image, size):
    iw, ih  = image.size
    w, h    = size

    scale   = min(w/iw, h/ih)
    nw      = int(iw*scale)
    nh      = int(ih*scale)

    image   = image.resize((nw,nh), Image.BICUBIC)
    new_image = Image.new('RGB', size, (128,128,128))
    new_image.paste(image, ((w-nw)//2, (h-nh)//2))

    return new_image, nw, nh


class UnetDataset(keras.utils.Sequence):
    def __init__(self, annotation_lines, input_shape, batch_size, num_classes, train, dataset_path):
        self.annotation_lines   = annotation_lines
        self.length             = len(self.annotation_lines)
        self.input_shape        = input_shape
        self.batch_size         = batch_size
        self.num_classes        = num_classes
        self.train              = train
        self.dataset_path       = dataset_path

    def __len__(self):
        return math.ceil(len(self.annotation_lines) / float(self.batch_size))

    def __getitem__(self, index):
        #图片和标签、
        images  = []
        targets = []
        # 读取一个batchsize
        for i in range(index*self.batch_size,(index+1)*self.batch_size):
            #判断 i 越界情况
            i = i%self.length
            name = self.annotation_lines[i].split()[0]
            # 从路径中读取图像 jpg 表示图片,png 表示标签
            jpg = Image.open(os.path.join(os.path.join(self.dataset_path,'Images'),name+'.png'))
            png = Image.open(os.path.join(os.path.join(self.dataset_path,'Labels'),name+'.png'))

            #-------------------
            # 数据增强  和 归一化
            #-------------------
            jpg,png = self.get_random_data(jpg,png,self.input_shape,random=self.train)
            jpg = preprocess_input(np.array(jpg,np.float64))
            png = np.array(png)

            #-----------------------------------
            # 医学图像中 描绘出的是细胞边缘 
            #  将小于 127.5的像素点 作为目标 像素点
            #------------------------------------

            seg_labels = np.zeros_like(png)
            seg_labels[png<=127.5] = 1
            #--------------------------------
            # 转化为 one hot 标签
            # -------------------------
            seg_labels  = np.eye(self.num_classes + 1)[seg_labels.reshape([-1])]
            seg_labels  = seg_labels.reshape((int(self.input_shape[0]), int(self.input_shape[1]), self.num_classes + 1))

            images.append(jpg)
            targets.append(seg_labels)

        images  = np.array(images)
        targets = np.array(targets)
        return images, targets

    def rand(self, a=0, b=1):
        return np.random.rand() * (b - a) + a

    def get_random_data(self, image, label, input_shape, jitter=.3, hue=.1, sat=1.5, val=1.5, random=True):
        image = cvtColor(image)
        label = Image.fromarray(np.array(label))
        h, w = input_shape

        if not random:
            iw, ih  = image.size
            scale   = min(w/iw, h/ih)
            nw      = int(iw*scale)
            nh      = int(ih*scale)

            image       = image.resize((nw,nh), Image.BICUBIC)
            new_image   = Image.new('RGB', [w, h], (128,128,128))
            new_image.paste(image, ((w-nw)//2, (h-nh)//2))

            label       = label.resize((nw,nh), Image.NEAREST)
            new_label   = Image.new('L', [w, h], (0))
            new_label.paste(label, ((w-nw)//2, (h-nh)//2))
            return new_image, new_label

        # resize image
        rand_jit1 = self.rand(1-jitter,1+jitter)
        rand_jit2 = self.rand(1-jitter,1+jitter)
        new_ar = w/h * rand_jit1/rand_jit2

        scale = self.rand(0.25, 2)
        if new_ar < 1:
            nh = int(scale*h)
            nw = int(nh*new_ar)
        else:
            nw = int(scale*w)
            nh = int(nw/new_ar)

        image = image.resize((nw,nh), Image.BICUBIC)
        label = label.resize((nw,nh), Image.NEAREST)
        
        flip = self.rand()<.5
        if flip: 
            image = image.transpose(Image.FLIP_LEFT_RIGHT)
            label = label.transpose(Image.FLIP_LEFT_RIGHT)
        
        # place image
        dx = int(self.rand(0, w-nw))
        dy = int(self.rand(0, h-nh))
        new_image = Image.new('RGB', (w,h), (128,128,128))
        new_label = Image.new('L', (w,h), (0))
        new_image.paste(image, (dx, dy))
        new_label.paste(label, (dx, dy))
        image = new_image
        label = new_label

        # distort image
        hue = self.rand(-hue, hue)
        sat = self.rand(1, sat) if self.rand()<.5 else 1/self.rand(1, sat)
        val = self.rand(1, val) if self.rand()<.5 else 1/self.rand(1, val)
        x = cv2.cvtColor(np.array(image,np.float32)/255, cv2.COLOR_RGB2HSV)
        x[..., 0] += hue*360
        x[..., 0][x[..., 0]>1] -= 1
        x[..., 0][x[..., 0]<0] += 1
        x[..., 1] *= sat
        x[..., 2] *= val
        x[x[:,:, 0]>360, 0] = 360
        x[:, :, 1:][x[:, :, 1:]>1] = 1
        x[x<0] = 0
        image_data = cv2.cvtColor(x, cv2.COLOR_HSV2RGB)*255
        return image_data,label

    def on_epoch_begin(self):
        shuffle(self.annotation_lines)

训练过程代码:

import numpy as np
from  tensorflow.python.keras.callbacks import EarlyStopping, ModelCheckpoint, TensorBoard
from keras.optimizers import Adam
import os
from unet_mini import unet_mini
from mobilnet_unet import mobilenet_unet
from callbacks import ExponentDecayScheduler,LossHistory
from keras import backend as K
from keras import backend 
from data_loader import UnetDataset
#--------------------------------------
# 交叉熵损失函数 cls_weights 类别的权重
#-------------------------------------
def CE(cls_weights):
    cls_weights = np.reshape(cls_weights, [1, 1, 1, -1])
    def _CE(y_true, y_pred):
        y_pred = K.clip(y_pred, K.epsilon(), 1.0 - K.epsilon())

        CE_loss = - y_true[...,:-1] * K.log(y_pred) * cls_weights
        CE_loss = K.mean(K.sum(CE_loss, axis = -1))
        # dice_loss = tf.Print(CE_loss, [CE_loss])
        return CE_loss
    return _CE
def f_score(beta=1, smooth = 1e-5, threhold = 0.5):
    def _f_score(y_true, y_pred):
        y_pred = backend.greater(y_pred, threhold)
        y_pred = backend.cast(y_pred, backend.floatx())

        tp = backend.sum(y_true[...,:-1] * y_pred, axis=[0,1,2])
        fp = backend.sum(y_pred         , axis=[0,1,2]) - tp
        fn = backend.sum(y_true[...,:-1], axis=[0,1,2]) - tp

        score = ((1 + beta ** 2) * tp + smooth) \
                / ((1 + beta ** 2) * tp + beta ** 2 * fn + fp + smooth)
        return score
    return _f_score

def train():
    #-------------------------
    # 细胞图像 分为细胞壁 和其他
    # 初始化 参数
    #-------------------------
    num_classes  = 2 

    input_shape = (512,512,3)
    # 从第几个epoch 继续训练
    
    batch_size = 4

    learn_rate  = 1e-4

    start_epoch = 0
    end_epoch = 100
    num_workers = 4

    dataset_path = 'Medical_Datasets'

    model = mobilenet_unet(num_classes,input_shape=input_shape)

    model.summary()

    # 读取数据图片的路劲
    with open(os.path.join(dataset_path, "ImageSets/Segmentation/train.txt"),"r") as f:
        train_lines = f.readlines()

    
    logging         = TensorBoard(log_dir = 'logs/')
    checkpoint      = ModelCheckpoint('logs/ep{epoch:03d}-loss{loss:.3f}.h5',
                        monitor = 'loss', save_weights_only = True, save_best_only = False, period = 1)
    reduce_lr       = ExponentDecayScheduler(decay_rate = 0.96, verbose = 1)
    early_stopping  = EarlyStopping(monitor='loss', min_delta=0, patience=10, verbose=1)
    loss_history    = LossHistory('logs/', val_loss_flag = False)

    epoch_step      = len(train_lines) // batch_size
    cls_weights     = np.ones([num_classes], np.float32)
    loss = CE(cls_weights)
    model.compile(loss = loss,
                optimizer = Adam(lr=learn_rate),
                metrics = [f_score()])

    train_dataloader    = UnetDataset(train_lines, input_shape[:2], batch_size, num_classes, True, dataset_path)
    
    
    print('Train on {} samples, with batch size {}.'.format(len(train_lines), batch_size))
    model.fit_generator(
            generator           = train_dataloader,
            steps_per_epoch     = epoch_step,
            epochs              = end_epoch,
            initial_epoch       = start_epoch,
            # use_multiprocessing = True if num_workers > 1 else False,
            workers             = num_workers,
            callbacks           = [logging, checkpoint, early_stopping,reduce_lr,loss_history]
        )

if __name__=="__main__":
    train()

最后的预测结果:

完整的代大家感兴趣可以去github下载下来再看,代码比较多,全部贴出来博客显得太长了。

这就是简单的语义分割任务啦。

参考

https://github.com/bubbliiiing/unet-keras

https://github.com/divamgupta/image-segmentation-keras 

以上就是Python深度学习之Unet 语义分割模型(Keras)的详细内容,更多关于Python Unet 语义分割模型的资料请关注脚本之家其它相关文章!

您可能感兴趣的文章:
阅读全文