Mysql

关注公众号 jb51net

关闭
首页 > 数据库 > Mysql > 数据优化-多层索引

MySQL数据优化-多层索引

作者:小旺不正经

这篇文章主要介绍了MySQL数据优化 多层索引,文章围绕MySQL数据优化 多层索引的相关资料展开详细的内容,具有一定的参考价值,需要的小伙伴可以参考一下

一、多层索引

1.创建

环境:Jupyter

import numpy as np
import pandas as pd
a=pd.DataFrame(np.random.random(size=(4,4)),index=[['上半年','上半年','下半年','下半年'],
                                                    ['一季度','二季度','三季度','四季度']],
              columns=[['蔬菜','蔬菜','肉类','肉类'],['胡萝卜','白菜','牛肉','猪肉']])
display(a)


2.设置索引的名称

import numpy as np
import pandas as pd
a=pd.DataFrame(np.random.random(size=(4,4)),index=[['上半年','上半年','下半年','下半年'],
                                                    ['一季度','二季度','三季度','四季度']],
              columns=[['蔬菜','蔬菜','肉类','肉类'],['胡萝卜','白菜','牛肉','猪肉']])
a.index.names=['年度','季度']
a.columns.names=['大类','小类']
display(a)


3.from_arrays( )-from_tuples()

import numpy as np
import pandas as pd
index=pd.MultiIndex.from_arrays([['上半年','上半年','下半年','下半年'],['一季度','二季度','三季度','四季度']])
columns=pd.MultiIndex.from_tuples([('蔬菜','胡萝卜'),('蔬菜','白菜'),('肉类','牛肉'),('肉类','猪肉')])
a=pd.DataFrame(np.random.random(size=(4,4)),index=index,columns=columns)
display(a)


4.笛卡儿积方式

from_product() 局限性较大

import pandas as pd
index = pd.MultiIndex.from_product([['上半年','下半年'],['蔬菜','肉类']])
a=pd.DataFrame(np.random.random(size=(4,4)),index=index)
display(a)


二、多层索引操作

1.Series

import pandas as pd
a=pd.Series([1,2,3,4],index=[['a','a','b','b'],['c','d','e','f']])
print(a)
print('---------------------')
print(a.loc['a'])
print('---------------------')
print(a.loc['a','c'])


import pandas as pd
a=pd.Series([1,2,3,4],index=[['a','a','b','b'],['c','d','e','f']])
print(a)
print('---------------------')
print(a.iloc[0])
print('---------------------')
print(a.loc['a':'b'])
print('---------------------')
print(a.iloc[0:2])


2.DataFrame

import numpy as np
import pandas as pd
a=pd.DataFrame(np.random.random(size=(4,4)),index=[['上半年','上半年','下半年','下半年'],
                                                    ['一季度','二季度','三季度','四季度']],
              columns=[['蔬菜','蔬菜','肉类','肉类'],['胡萝卜','白菜','牛肉','猪肉']])
print(a)
print('--------------------')
print(a.loc['上半年','二季度'])
print('--------------------')
print(a.iloc[0])


3.交换索引

swaplevel( )

import numpy as np
import pandas as pd
a=pd.DataFrame(np.random.random(size=(4,4)),index=[['2021','2021','2022','2022'],
                                                    ['一季度','二季度','三季度','四季度']],
              columns=[['蔬菜','蔬菜','肉类','肉类'],['胡萝卜','白菜','牛肉','猪肉']])
a.index.names=['年度','季度']
print(a)
print('--------------------')
print(a.swaplevel('年度','季度'))


4.索引排序

sort_index( )

import numpy as np
import pandas as pd
a=pd.DataFrame(np.random.random(size=(4,4)),index=[['2021','2021','2022','2022'],
                                                    [1,3,2,4]],
              columns=[['蔬菜','蔬菜','肉类','肉类'],['胡萝卜','白菜','牛肉','猪肉']])
a.index.names=['年度','季度']
print(a)
print('--------------------')
print(a.sort_index())
print('--------------------')
print(a.sort_index(level=1))


5.索引堆叠

stack( )

将指定层级的列转换成行

import numpy as np
import pandas as pd
a=pd.DataFrame(np.random.random(size=(4,4)),index=[['2021','2021','2022','2022'],
                                                    [1,3,2,4]],
              columns=[['蔬菜','蔬菜','肉类','肉类'],['胡萝卜','胡萝卜','牛肉','牛肉']])
print(a)
print('--------------------')
print(a.stack(0))
print('--------------------')
print(a.stack(-1))


6.取消堆叠

unstack( )

将指定层级的行转换成列

fill_value:指定填充值。

import numpy as np
import pandas as pd
a=pd.DataFrame(np.random.random(size=(4,4)),index=[['2021','2021','2022','2022'],
                                                    [1,3,2,4]],
              columns=[['蔬菜','蔬菜','肉类','肉类'],['胡萝卜','胡萝卜','牛肉','牛肉']])
print(a)
print('--------------------')
a=a.stack(0)
print(a)
print('--------------------')
print(a.unstack(-1))


import numpy as np
import pandas as pd
a=pd.DataFrame(np.random.random(size=(4,4)),index=[['2021','2021','2022','2022'],
                                                    [1,3,2,4]],
              columns=[['蔬菜','蔬菜','肉类','肉类'],['胡萝卜','胡萝卜','牛肉','牛肉']])
print(a)
print('--------------------')
a=a.stack(0)
print(a)
print('--------------------')
print(a.unstack(0,fill_value='0'))

到此这篇关于MySQL数据优化-多层索引的文章就介绍到这了,更多相关数据优化-多层索引内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

您可能感兴趣的文章:
阅读全文