Golang

关注公众号 jb51net

关闭
首页 > 脚本专栏 > Golang > golang及数字证书研究

golang开发及数字证书研究分享

作者:秋天的春

这篇文章主要为大家介绍了golang开发以及数字证书的研究示例分享,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步

在go语言提供的系统包中包含了大量和数字证书有关的方法。在这些方法中就有私钥生成的方法、私钥解析的方法、证书请求生成的方法、证书生成的方法等等。通过这些方法应该能够实现和openssl命令类似的功能。

仿照openssl生成证书的流程(从私钥的生成—>证书请求的生成—>证书的生成)用go语言进行模拟。

私钥的生成

在go的x509包下有go定义的证书的结构,该结构如下:

        Raw                     []byte // Complete ASN.1 DER content (certificate, signature algorithm and signature).
        RawTBSCertificate       []byte // Certificate part of raw ASN.1 DER content.
        RawSubjectPublicKeyInfo []byte // DER encoded SubjectPublicKeyInfo.
        RawSubject              []byte // DER encoded Subject
        RawIssuer               []byte // DER encoded Issuer
        Signature          []byte
        SignatureAlgorithm SignatureAlgorithm
        PublicKeyAlgorithm PublicKeyAlgorithm
        PublicKey          interface{}
        Version             int
        SerialNumber        *big.Int
        Issuer              pkix.Name
        Subject             pkix.Name
        NotBefore, NotAfter time.Time // Validity bounds.
        KeyUsage            KeyUsage
        Extensions []pkix.Extension
        ExtraExtensions []pkix.Extension
        UnhandledCriticalExtensions []asn1.ObjectIdentifier
        ExtKeyUsage        []ExtKeyUsage           // Sequence of extended key usages.
        UnknownExtKeyUsage []asn1.ObjectIdentifier // Encountered extended key usages unknown to this package.
        BasicConstraintsValid bool // if true then the next two fields are valid.
        IsCA                  bool
        MaxPathLen            int
        MaxPathLenZero bool
 
        SubjectKeyId   []byte
        AuthorityKeyId []byte
        OCSPServer            []string
        IssuingCertificateURL []string
 
        // Subject Alternate Name values
        DNSNames       []string
        EmailAddresses []string
        IPAddresses    []net.IP
        PermittedDNSDomainsCritical bool // if true then the name constraints are marked critical.
        PermittedDNSDomains         []string
        CRLDistributionPoints []string
        PolicyIdentifiers []asn1.ObjectIdentifier

在该结构中有PublicKeyAlgorithm字段,该字段用来表示生成公钥的算法。该字段的变量中可使用的字段如下:

const (
        UnknownPublicKeyAlgorithm PublicKeyAlgorithm = iota
        RSA
        DSA
        ECDSA
)

一共定义了4中情况。除去Unknown的情况。剩下的三种的实现分别在crypto/rsacrypto/dsacrypto/ecdsa这三个包中定义了实现。

RSA

使用RSA方法生成公私钥的方式非常简单。在crypto/rsa包中直接提供了生成方法。

func GenerateKey(random io.Reader, bits int) (*PrivateKey, error)

该方法生成一个rsa的私钥。查找整个包所提供的方法并没有什么方法能够生成公钥。但在包中有公钥的结构说明。查看私钥的结构:

type PrivateKey struct {
        PublicKey            // public part.
        D         *big.Int   // private exponent
        Primes    []*big.Int // prime factors of N, has >= 2 elements.
        Precomputed PrecomputedValues
}

赫然发现,公钥包含在私钥的结构中。换句话说,只要生成的私钥,公钥就同时拥有了(ECDSA和DSA的公钥也是如此)。

ECDSA

使用ECDSA生成公私钥的方式和RSA的方式非常类似:

func GenerateKey(c elliptic.Curve, rand io.Reader) (*PrivateKey, error)

crypto/elliptic为参数c提供了4中实现方式。分别为:

 func P224() Curve
 func P256() Curve
 func P384() Curve
 func P521() Curve

DSA

使用DSA生成公私钥的方式和上面两种有些不同:

func GenerateKey(priv *PrivateKey, rand io.Reader) error

私钥并不是作为结果返回,而是作为参数传入。那很简单,我直接初始化一个DSA的私钥,然后把该私钥作为参数传入不就可以了嘛。事实是,仅仅是实例化了一个DSA的私钥是无法完成公私钥的生成的。生成的结果如下:

priv:&{PublicKey:{Parameters:{P:<nil> Q:<nil> G:<nil>} Y:<nil>} X:<nil>}

可以发现公钥中的所有内容都是为nil(空),由此可以说明无法只通过GenerateKey()方法生成DSA的私钥。

crypto/dsa包中还提供了:

func GenerateParameters(params *Parameters, rand io.Reader, sizes ParameterSizes) error

通过该方法的描述,可以了解到该方法是为DSA设置参数。那又如何和公私钥有关呢?,在DSA的私钥结构中包含公钥,在公钥的结构中就包含该方法所需要传入的参数Parameters。由此,我便想到可以先使用该方法对一些参数进行初始化,然后再生成私钥。

priv := &dsa.PrivateKey{}
dsa.GenerateParameters(&priv.Parameters, rand.Reader, dsa.L1024N160)
dsa.GenerateKey(priv, rand.Reader)

生成的私钥内容如下:

priv:&{PublicKey:{Parameters:{P:+91268520972047344779510472614939006285152176630742165979533208518526258287540244526987668731096217967904150874969731516661412604963023247030101570715552650277776208098462838867711078025572452557692674802977527475661989210578136725258241385474445330497234586673407237238372329018550727884900161895964574509801 Q:+767580094855879488293276223470508701563202760721 G:+42393651221310072390273970570719382707264443685255379637082820177806079494092036767507554061381644533127114802103872901363724639317297276457243780033980909021336576570837756106975221868617534717069925676009421223798208864916837561389117514471387385853288499961716794226875046226553216578582138687489881455573} Y:+68767508229940365112562020548287141674708444377336699267991474890690034611201698420418573204906537903040876819582645033160073997940957577512216430788561800033703926395782022182868300960590402743043934344374390498368316144177816214923367214895567903510165216432049170686626889267028482641530556275670781873053} X:+628682865942164859869306394087148223993136336500}

注意:Golang 对DSA证书没有完整的支持。

给私钥上锁(加访问密码)

在使用openssl进行私钥生成的时候,openssl需要我提供私钥的访问密码。那使用go进行私钥时,应该也有该功能。那应该在什么时候添加这个密码呢?是在生成私钥的时候,还是在生成pem文件的时候。我首先想到的是在生成秘密的时候,但是在crypto/rsacrypto/dsacrypto/ecdsa这三个包中查找时并没有发现任何和密码有关的词眼。那就应该在生成pem文件的时候加上密码。生成pem文件的方法在encoding/pem这个包中。但该包中只有两个编码,一个解码的方法,和密码有没有任何关系,唯一的存在的关系就是Block结构中的Header字段。

使用openssl生成的私钥文件中会存在这样的字段:

Proc-Type: 4,ENCRYPTED
DEK-Info: DES-EDE3-CBC,02a0ba59e8cfd431

使用该字段来说明使用加密方式和提供用于解密的初始值向量。

在生成私钥和生成文件都无法把密码添加进去。那我就在想是否是在得到私钥的时候对私钥的byte数组进行加密。但这样就需要自己实现了。讲道理的话,go应该会为这种普遍性的东西提供已经封装好的方法。来回重新看api文档。发现自己漏看一个非常重要的包crypto/x509。在该包提供的方法中。很轻松的就找到了如下两个方法:

func DecryptPEMBlock(b *pem.Block, password []byte) ([]byte, error)
func EncryptPEMBlock(rand io.Reader, blockType string, data, password []byte, alg PEMCipher) (*pem.Block, error)

在这两个方法中又要pem,password,恩应该就是这两个方法了,正好一个生成一个解析。

同在x509包下提供了:

func MarshalPKCS1PrivateKey(key *rsa.PrivateKey) []byte
func MarshalECPrivateKey(key *ecdsa.PrivateKey) ([]byte, error)

把RSA和ECDSA私钥转换成byte数组的方法,但是没有找到把DSA私钥转换成byte数组的方法。

生成证书请求

证书请求生成很简单在crypto/x509中直接提供了现成的方法。

func CreateCertificateRequest(rand io.Reader, template *CertificateRequest, priv interface{}) (csr []byte, err error)

但使用用该方法有一个限制条件:

All keys types that are implemented via crypto.Signer are supported (This includes *rsa.PublicKey and *ecdsa.PublicKey.)

无法使用*dsa.PublicKey类型的公钥。而传入的参数是一个私钥,因此无法使用dsa类型的私钥。

go对dsa类型的证书

该方法需要通过一个证书请求的模板,在go中CertificateRequest是如下定义的:

Raw                      []byte // Complete ASN.1 DER content (CSR, signature algorithm and signature).
RawTBSCertificateRequest []byte // Certificate request info part of raw ASN.1 DER content.
RawSubjectPublicKeyInfo  []byte // DER encoded SubjectPublicKeyInfo.
RawSubject               []byte // DER encoded Subject.
Version            int
Signature          []byte
SignatureAlgorithm SignatureAlgorithm
PublicKeyAlgorithm PublicKeyAlgorithm
PublicKey          interface{}
Subject pkix.Name
Attributes []pkix.AttributeTypeAndValueSET
Extensions []pkix.Extension
ExtraExtensions []pkix.Extension
DNSNames       []string
EmailAddresses []string
IPAddresses    []net.IP

有一些内容可以不用填写。如果填写了,在后面生成证书时将作为内容直接填入,我就根据openssl生成证书请求时在控制台所展现的内容进行填写。即添加Subject中的内容。Subject是这样定义的:

type Name struct {
        Country, Organization, OrganizationalUnit []string
        Locality, Province                        []string
        StreetAddress, PostalCode                 []string
        SerialNumber, CommonName                  string
 
        Names      []AttributeTypeAndValue
        ExtraNames []AttributeTypeAndValue
}

生成证书

在go提供的crypto/x509包下并没有生成CA的方法,生成证书的方法也只有一个方法:

func CreateCertificate(rand io.Reader, template, parent *Certificate, pub, priv interface{}) (cert []byte, err error)

它的参数中使用的是两个证书,和我们之前生成的CertificateRequest没有关系,而且在整个crypto/x509中的方法中都没有找到把CertificateRequest转换成Certificate的方法,而且CertificateRequest和Certificate中的部分数据结构是一样的,因此猜想是通过把CertificateRequest中的部分内容复制到Certificate中。然后再通过CreateCertificate进行签发。

如果传入的两个证书参数是一样的,那么生成的证书是一张自签发的根证书。如果传入的两张证书不同,生成的就是普通的证书了。使用的公钥和私钥是签发者的公私钥即参数parent的公私钥。和生成CertificateRequest一样,在这个方法中使用的公私钥不能是DSA类型的。

设置CA

在Certificate这个结构体中有IsCA这个字段。用来标识该证书是CA证书,但是在设置该字段为true后生成的证书在扩展中并没有显示这个证书是CA证书的。原因是在如果要使IsCA生效,需要设置BasicConstraintsValid也为true。同样的也适用于MaxPathLen这个字段。

签名算法的选择

在go中为证书的签名算法提供了常见的类型:

UnknownSignatureAlgorithm SignatureAlgorithm = iota
MD2WithRSA
MD5WithRSA
SHA1WithRSA
SHA256WithRSA
SHA384WithRSA
SHA512WithRSA
DSAWithSHA1
DSAWithSHA256
ECDSAWithSHA1
ECDSAWithSHA256
ECDSAWithSHA384
ECDSAWithSHA512

在生成证书的时候我直接选择的SHA1WITHRSA,应为我的私钥是通过RSA算法生成的,没有任何问题,但是在看go的源码中有一段生成自签名证书的测试方法。在该方法中使用了其他的签名算法。因此我想,这些签名算法的应该如何选择。当我把签名算法改成ECDSAWITHSHA1的时候,在进行签名的时候,出现了签名错误。

因此我猜猜签名算法的选择需要和签署者的公私钥的生成方式有关。

代码时间

一切用代码说话。

和生成私钥有关:

func GenRSAPriv(fileName, passwd string, len int) error {
    priv, err := rsa.GenerateKey(rand.Reader, len)
    if err != nil {
        return err
    }
 
    data := x509.MarshalPKCS1PrivateKey(priv)
    err = encodePrivPemFile(fileName, passwd, data)
    return err
}
//GenECDSAPriv 生成ECDSA私钥文件
func GenECDSAPriv(fileName, passwd string) error {
    priv, err := ecdsa.GenerateKey(elliptic.P224(), rand.Reader)
    if err != nil {
        return err
    }
    data, err := x509.MarshalECPrivateKey(priv)
    if err != nil {
        return err
    }
    err = encodePrivPemFile(fileName, passwd, data)
    return err
}
//GenDSAPriv 生成DSA私钥(用于演示)
func GenDSAPriv() {
    priv := &dsa.PrivateKey{}
    dsa.GenerateParameters(&priv.Parameters, rand.Reader, dsa.L1024N160)
    dsa.GenerateKey(priv, rand.Reader)
    fmt.Printf("priv:%+v\n", priv)
} 
//DecodePriv 解析私钥文件生成私钥,(RSA,和ECDSA两种私钥格式)
func DecodePriv(fileName, passwd string) (pubkey, priv interface{}, err error) {
    data, err := ioutil.ReadFile(fileName)
    if err != nil {
        return nil, nil, errors.New("读取私钥文件错误")
    }
    block, _ := pem.Decode(data)
    data, err = x509.DecryptPEMBlock(block, []byte(passwd))
    if err != nil {
        return nil, nil, err
    }
 
    privKey, err := x509.ParsePKCS1PrivateKey(data) //解析成RSA私钥
    if err != nil {
        priv, err = x509.ParseECPrivateKey(data) //解析成ECDSA私钥
        if err != nil {
            return nil, nil, errors.New("支持持RSA和ECDSA格式的私钥")
        }
    }
    priv = privKey
    pubkey = &privKey.PublicKey
    return
} 
//生成私钥的pem文件
func encodePrivPemFile(fileName, passwd string, data []byte) error {
    block, err := x509.EncryptPEMBlock(rand.Reader, "RSA PRIVATE KEY", data, []byte(passwd), x509.PEMCipher3DES)
    if err != nil {
        return err
    }
    file, err := os.Create(fileName)
    if err != nil {
        return err
    }
    err = pem.Encode(file, block)
    if err != nil {
        return err
    }
    return nil
}

在这个代码用有一些问题:使用ECDSA生成私钥后加密的Type不知道填什么,暂时使用了”RSA PRIVATE KEY”。

和CertificateRequest有关的代码:

// EncodeCsr 生成证书请求
func EncodeCsr(country, organization, organizationlUnit, locality, province, streetAddress, postallCode []string, commonName, fileName string, priv interface{}) error {
    req := &x509.CertificateRequest{
        Subject: pkix.Name{
            Country:            country,
            Organization:       organization,
            OrganizationalUnit: organizationlUnit,
            Locality:           locality,
            Province:           province,
            StreetAddress:      streetAddress,
            PostalCode:         postallCode,
            CommonName:         commonName,
        },
    } 
    data, err := x509.CreateCertificateRequest(rand.Reader, req, priv)
    if err != nil {
        return err
    }
    err = util.EncodePemFile(fileName, "CERTIFICATE REQUEST", data)
    return err
} 
//DecodeCsr 解析CSRpem文件
func DecodeCsr(fileName string) (*x509.CertificateRequest, error) {
    data, err := util.DecodePemFile(fileName)
    if err != nil {
        return nil, err
    } 
    req, err := x509.ParseCertificateRequest(data)
    return req, err
}

和生成Certificate有关的代码:

//GenSignselfCertificate 生成自签名证书
func GenSignselfCertificate(req *x509.CertificateRequest, publickey, privKey interface{}, fileName string, maxPath int, days time.Duration) error {
    template := &x509.Certificate{
        SerialNumber:          big.NewInt(random.Int63n(time.Now().Unix())),
        Subject:               req.Subject,
        NotBefore:             time.Now(),
        NotAfter:              time.Now().Add(days * 24 * time.Hour),
        BasicConstraintsValid: true,
        IsCA:               true,
        SignatureAlgorithm: x509.SHA1WithRSA, // 签名算法选择SHA1WithRSA
        KeyUsage:           x509.KeyUsageCertSign | x509.KeyUsageCRLSign | x509.KeyUsageDataEncipherment,
        SubjectKeyId:       []byte{1, 2, 3},
    }
    if maxPath > 0 { //如果长度超过0则设置了 最大的路径长度
        template.MaxPathLen = maxPath
    }
    cert, err := x509.CreateCertificate(rand.Reader, template, template, publickey, privKey)
    if err != nil {
        return errors.New("签发自签名证书失败")
    }
    err = util.EncodePemFile(fileName, "CERTIFICATE", cert)
    if err != nil {
        return err
    }
    return nil
} 
//GenCertificate 生成非自签名证书
func GenCertificate(req *x509.CertificateRequest, parentCert *x509.Certificate, pubKey, parentPrivKey interface{}, fileName string, isCA bool, days time.Duration) error {
    template := &x509.Certificate{
        SerialNumber: big.NewInt(random.Int63n(time.Now().Unix())),
        Subject:      req.Subject,
        NotBefore:    time.Now(),
        NotAfter:     time.Now().Add(days * 24 * time.Hour),
        // ExtKeyUsage: []x509.ExtKeyUsage{ //额外的使用
        //  x509.ExtKeyUsageClientAuth,
        //  x509.ExtKeyUsageServerAuth,
        // },
        //
 
        SignatureAlgorithm: x509.SHA1WithRSA,
    }
 
    if isCA {
        template.BasicConstraintsValid = true
        template.IsCA = true
    } 
    cert, err := x509.CreateCertificate(rand.Reader, template, parentCert, pubKey, parentPrivKey)
    if err != nil {
        return errors.New("签署证书失败")
    }
    err = util.EncodePemFile(fileName, "CERTIFICATE", cert)
    if err != nil {
        return err
    }
    return nil
}

在生成证书这方法,由于可设置的内容过多,不应该使用参数来对证书内容进行控制。应该和openssl一样使用配置文件的方式来对证书中的内容进行配置。

以上就是golang开发及数字证书研究分享的详细内容,更多关于golang的资料请关注脚本之家其它相关文章!

您可能感兴趣的文章:
阅读全文