Golang

关注公众号 jb51net

关闭
首页 > 脚本专栏 > Golang > go语言实现图的广度与深度优先搜索

go语言编程学习实现图的广度与深度优先搜索

作者:微小冷

这篇文章主要为大家介绍了go语言编程学习实现图的广度与深度优先搜索示例详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步

图的实现

所谓图就是节点及其连接关系的集合。所以可以通过一个一维数组表示节点,外加一个二维数组表示节点之间的关系。

//图的矩阵实现
typedef struct MGRAPH{
    nodes int[];    //节点
    edges int[][];  //边
}mGraph;

在这里插入图片描述

然而对于一些实际问题,其邻接矩阵中可能存在大量的0值,此时可以通过邻接链表来表示稀疏图,其数据结构如图所示

在这里插入图片描述

其左侧为图的示意图,右侧为图的邻接链表。红字表示节点序号,链表中为与这个节点相连的节点,如1节点与2、5节点相连。由于在go中,可以很方便地使用数组来代替链表,所以其链表结构可以写为

package main
import "fmt"
type Node struct{
	value int;      //节点为int型
};
type Graph struct{
	nodes []*Node
	edges map[Node][]*Node		//邻接表示的无向图
}

其中,map为Go语言中的键值索引类型,其定义格式为map[<op1>]<op2><op1>为键,<op2>为值。在图结构中,map[Node][]*Node表示一个Node对应一个Node指针所组成的数组。

下面将通过Go语言生成一个图

//增加节点
//可以理解为Graph的成员函数
func (g *Graph) AddNode(n *Node)  {
	g.nodes = append(g.nodes, n)
}
//增加边
func (g *Graph) AddEdge(u, v *Node) {
	g.edges[*u] = append(g.edges[*u],v)	//u->v边
	g.edges[*v] = append(g.edges[*v],u)	//u->v边
}
//打印图
func (g *Graph) Print(){
	//range遍历 g.nodes,返回索引和值
	for _,iNode:=range g.nodes{
		fmt.Printf("%v:",iNode.value)
		for _,next:=range g.edges[*iNode]{
			fmt.Printf("%v->",next.value)
		}
		fmt.Printf("\n")
	}
}
func initGraph() Graph{
	g := Graph{}
	for i:=1;i<=5;i++{
		g.AddNode(&Node{i,false})
	}
	//生成边
	A := [...]int{1,1,2,2,2,3,4}
	B := [...]int{2,5,3,4,5,4,5}
	g.edges = make(map[Node][]*Node)//初始化边
	for i:=0;i<7;i++{
		g.AddEdge(g.nodes[A[i]-1], g.nodes[B[i]-1])
	}
	return g
}
func main(){
	g := initGraph()
	g.Print()
}

其运行结果为

PS E:\Code> go run .\goGraph.go
1:2->5->
2:1->3->4->5->
3:2->4->
4:2->3->5->
5:1->2->4->

BFS

广度优先搜索(BFS)是最简单的图搜索算法,给定图的源节点后,向外部进行试探性地搜索。其特点是,通过与源节点的间隔来调控进度,即只有当距离源节点为 k k k的节点被搜索之后,才会继续搜索,得到距离源节点为 k + 1 k+1 k+1的节点。

对于图的搜索而言,可能存在重复的问题,即如果1搜索到2,相应地2又搜索到1,可能就会出现死循环。因此对于图中的节点,我们用searched对其进行标记,当其值为false时,说明没有被搜索过,否则则说明已经搜索过了。

type Node struct{
	value int;
	searched bool;
}
/*func initGraph() Graph{
    g := Graph{}
*/
    //相应地更改节点生成函数
    for i:=1;i<=5;i++{
		g.AddNode(&Node{i,false})
	}
/*
...
*/

此外,由于在搜索过程中会改变节点的属性,所以map所对应哈希值也会发生变化,即Node作为键值将无法对应原有的邻接节点,所以Graph中边的键值更替为节点的指针,这样即便节点的值发生变化,但其指针不会变化。

type Graph struct{
	nodes []*Node
	edges map[*Node][]*Node		//邻接表示的无向图
}
//增加边
func (g *Graph) AddEdge(u, v *Node) {
	g.edges[u] = append(g.edges[u],v)	//u->v边
	g.edges[v] = append(g.edges[v],u)	//u->v边
}
//打印图
func (g *Graph) Print(){
	//range遍历 g.nodes,返回索引和值
	for _,iNode:=range g.nodes{
		fmt.Printf("%v:",iNode.value)
		for _,next:=range g.edges[iNode]{
			fmt.Printf("%v->",next.value)
		}
		fmt.Printf("\n")
	}
}
func initGraph() Graph{
	g := Graph{}
	for i:=1;i<=9;i++{
		g.AddNode(&Node{i,false})
	}
	//生成边
	A := [...]int{1,1,2,2,2,3,4,5,5,6,1}
	B := [...]int{2,5,3,4,5,4,5,6,7,8,9}
	g.edges = make(map[*Node][]*Node)//初始化边
	for i:=0;i<11;i++{
		g.AddEdge(g.nodes[A[i]-1], g.nodes[B[i]-1])
	}
	return g
}
func (g *Graph) BFS(n *Node){
	var adNodes[] *Node		//存储待搜索节点
	n.searched = true
	fmt.Printf("%d:",n.value)
	for _,iNode:=range g.edges[n]{
		if !iNode.searched {
			adNodes = append(adNodes,iNode)
			iNode.searched=true
			fmt.Printf("%v ",iNode.value)
		}
	}
	fmt.Printf("\n")
	for _,iNode:=range adNodes{
		g.BFS(iNode)
	}
}
func main(){
	g := initGraph()
	g.Print()
	g.BFS(g.nodes[0])
}

该图为

在这里插入图片描述

输出结果为

PS E:\Code\goStudy> go run .\goGraph.go
1:2->5->9->
2:1->3->4->5->
3:2->4->
4:2->3->5->
5:1->2->4->6->7->
6:5->8->
7:5->
8:6->
9:1->
//下面为BFS结果
1:2 5 9
2:3 4
3:
4:
5:6 7
6:8
8:
7:
9:

DFS

深度优先遍历(DFS)与BFS的区别在于,后者的搜索过程可以理解为逐层的,即可将我们初始搜索的节点看成父节点,那么与该节点相连接的便是一代节点,搜索完一代节点再搜索二代节点。DFS则是从父节点搜索开始,一直搜索到末代节点,从而得到一个末代节点的一条世系;然后再对所有节点进行遍历,找到另一条世系,直至不存在未搜索过的节点。

其基本步骤为:

我们先实现第二步,即单个节点的最深搜索结果

func (g *Graph) visitNode(n *Node){
	for _,iNode:= range g.edges[n]{
		if !iNode.searched{
			iNode.searched = true
			fmt.Printf("%v->",iNode.value)
			g.visitNode(iNode)
			return
		}
	}
}
func main(){
	g := initGraph()
	g.nodes[0].searched = true
	fmt.Printf("%v->",g.nodes[0].value)
	g.visitNode(g.nodes[0])
}

结果为

PS E:\Code> go run .\goGraph.go
1->2->3->4->5->6->8->

在这里插入图片描述

可见,还有节点7、9未被访问。

完整的DFS算法只需在单点遍历之前,加上一个对所有节点的遍历即可

func (g *Graph) DFS(){
	for _,iNode:=range g.nodes{
		if !iNode.searched{
			iNode.searched = true
			fmt.Printf("%v->",iNode.value)
			g.visitNode(iNode)
			fmt.Printf("\n")
			g.DFS()
		}
	}
}
func main(){
	g := initGraph()
	g.nodes[0].searched = true
	fmt.Printf("%v->",g.nodes[0].value)
	g.visitNode(g.nodes[0])
}

结果为

PS E:\Code> go run .\goGraph.go
1->2->3->4->5->6->8->
7->
9->

以上就是go语言编程学习实现图的广度与深度优先搜索的详细内容,更多关于go语言实现图的广度与深度优先搜索的资料请关注脚本之家其它相关文章!

您可能感兴趣的文章:
阅读全文