Python爬虫入门案例之爬取去哪儿旅游景点攻略以及可视化分析
作者:松鼠爱吃饼干
读万卷书不如行万里路,学的扎不扎实要通过实战才能看出来,本篇文章手把手带你爬取去哪儿平台的旅游景点攻略并进行可视化分析,大家可以在过程中查缺补漏,看看自己掌握程度怎么样
知识点
- requests 发送网络请求
- parsel 解析数据
- csv 保存数据
第三方库
- requests >>> pip install requests
- parsel >>> pip install parsel
开发环境:
- 版 本: python 3.8
- 编辑器:pycharm 2021.2
【付费VIP完整版】只要看了就能学会的教程,80集Python基础入门视频教学
爬虫程序
导入模块
# 发送网络请求的模块 import requests # 解析数据的模块 import parsel import csv import time import random
发送请求
url = f'https://travel.qunar.com/travelbook/list.htm?page=1&order=hot_heat' # <Response [200]>: 告诉我们 请求成功了 response = requests.get(url)
获取数据(网页源代码)
html_data = response.text
解析网页(re正则表达式,css选择器,xpath,bs4/六年没更新了,json)
# html_data: 字符串 # 我们现在要把这个字符串 变成一个对象 selector = parsel.Selector(html_data) # ::attr(href) url_list:列表 url_list = selector.css('.b_strategy_list li h2 a::attr(href)').getall() for detail_url in url_list: # 字符串的 替换方法 detail_id = detail_url.replace('/youji/', '') url_1 = 'https://travel.qunar.com/travelbook/note/' + detail_id print(url_1)
向详情页网站发送请求(get,post)
# https://travel.qunar.com/travelbook/note/7701502 response_1 = requests.get(url_1).text
解析网页
selector_1 = parsel.Selector(response_1) # :nth-child(): 伪类选择器 # ::text 提取文本内容 # * 代表所有 # 地点 title = selector_1.css('.b_crumb_cont *:nth-child(3)::text').get().replace('旅游攻略', '') # 短评 comment = selector_1.css('.title.white::text').get() # 出发日期 date = selector_1.css('#js_mainleft > div.b_foreword > ul > li.f_item.when > p > span.data::text').get() # 天数 days = selector_1.css('#js_mainleft > div.b_foreword > ul > li.f_item.howlong > p > span.data::text').get() # 人均消费 money = selector_1.css('#js_mainleft > div.b_foreword > ul > li.f_item.howmuch > p > span.data::text').get() # 人物 character = selector_1.css('#js_mainleft > div.b_foreword > ul > li.f_item.who > p > span.data::text').get() # 玩法 play_list = selector_1.css('#js_mainleft > div.b_foreword > ul > li.f_item.how > p > span.data span::text').getall() play = ' '.join(play_list) # 浏览量 count = selector_1.css('.view_count::text').get() print(title, comment, date, days, money, character, play, count)
保存数据
# 保存成csv csv_qne = open('去哪儿.csv', mode='a', encoding='utf-8', newline='') csv_writer = csv.writer(csv_qne) # 写入数据 csv_writer.writerow(['地点', '短评', '出发时间', '天数', '人均消费', '人物', '玩法', '浏览量'])
数据可视化
导入模块
import pandas as pd from pyecharts.commons.utils import JsCode from pyecharts.charts import * from pyecharts import options as opts
导入数据
data = pd.read_csv('去哪儿_数分.csv') data
旅游胜地Top10及对应费用
bar=( Bar(init_opts=opts.InitOpts(height='500px',width='1000px',theme='dark')) .add_xaxis(m2) .add_yaxis( '目的地Top10', n2, label_opts=opts.LabelOpts(is_show=True,position='top'), itemstyle_opts=opts.ItemStyleOpts( color=JsCode("""new echarts.graphic.LinearGradient( 0, 0, 0, 1,[{offset: 0,color: 'rgb(255,99,71)'}, {offset: 1,color: 'rgb(32,178,170)'}]) """ ) ) ) .set_global_opts( title_opts=opts.TitleOpts( title='目的地Top10'), xaxis_opts=opts.AxisOpts(name='景点名称', type_='category', axislabel_opts=opts.LabelOpts(rotate=90), ), yaxis_opts=opts.AxisOpts( name='数量', min_=0, max_=120.0, splitline_opts=opts.SplitLineOpts(is_show=True,linestyle_opts=opts.LineStyleOpts(type_='dash')) ), tooltip_opts=opts.TooltipOpts(trigger='axis',axis_pointer_type='cross') ) .set_series_opts( markline_opts=opts.MarkLineOpts( data=[ opts.MarkLineItem(type_='average',name='均值'), opts.MarkLineItem(type_='max',name='最大值'), opts.MarkLineItem(type_='min',name='最小值'), ] ) ) ) bar.render_notebook()
bar=( Bar(init_opts=opts.InitOpts(height='500px',width='1000px',theme='dark')) .add_xaxis(loc) .add_yaxis( '人均费用', price_mean2, label_opts=opts.LabelOpts(is_show=True,position='top'), itemstyle_opts=opts.ItemStyleOpts( color=JsCode("""new echarts.graphic.LinearGradient( 0, 0, 0, 1,[{offset: 0,color: 'rgb(255,99,71)'}, {offset: 1,color: 'rgb(32,178,170)'}]) """ ) ) ) .set_global_opts( title_opts=opts.TitleOpts( title='各景点人均费用'), xaxis_opts=opts.AxisOpts(name='景点名称', type_='category', axislabel_opts=opts.LabelOpts(rotate=90), ), yaxis_opts=opts.AxisOpts( name='数量', min_=0, max_=2000.0, splitline_opts=opts.SplitLineOpts(is_show=True,linestyle_opts=opts.LineStyleOpts(type_='dash')) ), tooltip_opts=opts.TooltipOpts(trigger='axis',axis_pointer_type='cross') ) .set_series_opts( markline_opts=opts.MarkLineOpts( data=[ opts.MarkLineItem(type_='average',name='均值'), opts.MarkLineItem(type_='max',name='最大值'), opts.MarkLineItem(type_='min',name='最小值'), ] ) ) ) bar.render_notebook()
出游方式分析
pie = (Pie(init_opts=opts.InitOpts(theme='dark', width='1000px', height='800px')) .add("", [z for z in zip(m1,n1)], radius=["40%", "65%"]) .set_global_opts(title_opts=opts.TitleOpts(title="去哪儿\n\n出游结伴方式", pos_left='center', pos_top='center', title_textstyle_opts=opts.TextStyleOpts( color='#FF6A6A', font_size=30, font_weight='bold'), ), visualmap_opts=opts.VisualMapOpts(is_show=False, min_=38, max_=641, is_piecewise=False, dimension=0, range_color=['#9400D3', '#008afb', '#ffec4a', '#FFA500','#ce5777']), legend_opts=opts.LegendOpts(is_show=False, pos_top='5%'), ) .set_series_opts(label_opts=opts.LabelOpts(formatter="{b}: {c}", font_size=12), tooltip_opts=opts.TooltipOpts(trigger="item", formatter="{b}: {c}"), itemstyle_opts={"normal": { "barBorderRadius": [30, 30, 30, 30], 'shadowBlur': 10, 'shadowColor': 'rgba(0,191,255,0.5)', 'shadowOffsetY': 1, 'opacity': 0.8 } }) ) pie.render_notebook()
出游时间分析
line = ( Line() .add_xaxis(m4.tolist()) .add_yaxis('',n4.tolist()) ) line.render_notebook()
2021年的旅游时间曲线大约在五月一号起伏最大,原因肯定是因为假期调休延长至4天,为了调整自己生活及工作的状态,很多人利用这个假期去旅行放松自己。
出游玩法分析
m5 = [] n5 = [] for i in range(20): m5.append(list[i][0]) n5.append(list[i][1]) m5.reverse() m6 = m5 n5.reverse() n6 = n5 bar = ( Bar(init_opts=opts.InitOpts(theme='dark', width='1000px',height ='500px')) .add_xaxis(m6) .add_yaxis('', n6) .set_series_opts(label_opts=opts.LabelOpts(is_show=True, position='insideRight', font_style='italic'), itemstyle_opts=opts.ItemStyleOpts( color=JsCode("""new echarts.graphic.LinearGradient(1, 0, 0, 0, [{ offset: 0, color: 'rgb(255,99,71)' }, { offset: 1, color: 'rgb(32,178,170)' }])""")) ) .set_global_opts( title_opts=opts.TitleOpts(title="出游玩法分析"), xaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(rotate=45)), legend_opts=opts.LegendOpts(is_show=True)) .reversal_axis() ) bar.render_notebook()
“摄影”和“美食”可谓与旅行息息相关,一次完整的旅行最不能缺的就是“摄影”,拍美食发到朋友圈、拍风景发到朋友圈、拍完美的自己发到朋友圈;工作之后就没有了寒暑假,所以利用周末来一次短途旅行就成为了大多数人的首选。
到此这篇关于Python爬虫入门案例之爬取去哪儿旅游景点攻略以及可视化分析的文章就介绍到这了,更多相关Python 爬取去哪儿内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!
您可能感兴趣的文章:
- Python7个爬虫小案例详解(附源码)下篇
- Python7个爬虫小案例详解(附源码)中篇
- Python7个爬虫小案例详解(附源码)上篇
- 利用Python爬虫爬取金融期货数据的案例分析
- Python爬虫采集Tripadvisor数据案例实现
- Python Ajax爬虫案例分享
- Python爬虫入门案例之爬取二手房源数据
- Python爬虫入门案例之回车桌面壁纸网美女图片采集
- Python爬虫之Scrapy环境搭建案例教程
- 用Python爬虫破解滑动验证码的案例解析
- python爬虫系列网络请求案例详解
- python爬虫破解字体加密案例详解
- python爬虫线程池案例详解(梨视频短视频爬取)
- python爬虫scrapy框架的梨视频案例解析
- python爬虫利器之requests库的用法(超全面的爬取网页案例)
- Python爬虫实战案例之爬取喜马拉雅音频数据详解
- Python爬虫Scrapy框架CrawlSpider原理及使用案例
- Python爬虫之对CSDN榜单进行分析