python

关注公众号 jb51net

关闭
首页 > 脚本专栏 > python > OpenCV腐蚀膨胀

OpenCV半小时掌握基本操作之腐蚀膨胀

作者:我是小白呀

这篇文章主要介绍了OpenCV基本操作之腐蚀膨胀,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

【OpenCV】⚠️高手勿入! 半小时学会基本操作⚠️ 腐蚀膨胀

概述

OpenCV 是一个跨平台的计算机视觉库, 支持多语言, 功能强大. 今天小白就带大家一起携手走进 OpenCV 的世界. (第 10 课)

在这里插入图片描述

腐蚀

腐蚀 (Eroding) 会沿着图像边界向内收缩, 从而消除边界点.

在这里插入图片描述

原图:

在这里插入图片描述

例子:

# 读取图片
img = cv2.imread("white.jpg")

# 腐蚀
erode = cv2.erode(img, kernel=(3, 3), iterations=5)

# 图片展示
cv2.imshow("erode", erode)
cv2.waitKey(0)
cv2.destroyAllWindows()

输出结果:

在这里插入图片描述

我们可以看到旁边的一圈线基本不见了.

膨胀

膨胀 (Dilating) 会沿着图像边界向外膨胀.

例子:

# 读取图片
img = cv2.imread("white.jpg")

# 膨胀
dilate = cv2.dilate(img, kernel=(3, 3), iterations=5)

# 图片展示
cv2.imshow("dilate", dilate)
cv2.waitKey(0)
cv2.destroyAllWindows()

输出结果:

在这里插入图片描述

开运算

开运算: 先腐蚀 (Eroding) 在膨胀 (Dilating).

例子:

# 开运算
open = cv2.morphologyEx(img, cv2.MORPH_OPEN, (3, 3), iterations=5)

# 图像展示
cv2.imshow('open', open)
cv2.waitKey(0)
cv2.destroyAllWindows()

输出结果:

在这里插入图片描述

闭运算

开运算: 先膨胀 (Dilating), 再腐蚀 (Eroding).

例子:

# 读取图片
img = cv2.imread("white.jpg")

# 闭运算
close = cv2.morphologyEx(img, cv2.MORPH_CLOSE, (3, 3), iterations=5)

# 图像展示
cv2.imshow('close', close)
cv2.waitKey(0)
cv2.destroyAllWindows()

输出结果:

在这里插入图片描述

到此这篇关于OpenCV半小时掌握基本操作之腐蚀膨胀的文章就介绍到这了,更多相关OpenCV腐蚀膨胀内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

您可能感兴趣的文章:
阅读全文