python

关注公众号 jb51net

关闭
首页 > 脚本专栏 > python > OpenCV圆圈检测

OpenCV半小时掌握基本操作之圆圈检测

作者:我是小白呀

这篇文章主要介绍了OpenCV基本操作之圆圈检测,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

【OpenCV】⚠️高手勿入! 半小时学会基本操作 ⚠️ 圆圈检测

概述

OpenCV 是一个跨平台的计算机视觉库, 支持多语言, 功能强大. 今天小白就带大家一起携手走进 OpenCV 的世界.

在这里插入图片描述

霍夫圆变换

霍夫圆变换 (Hough Circle Transform) 的原理和霍夫直线变换类似. 对于一条直线, 我们可以用参数 (r, θ) 表示, 对于圆我们需要三个参数 (x, y, r), 分别代表三个参数 x 圆心, y 圆心, r, 半径.

在这里插入图片描述

代码实现

因为霍夫圆检测对噪声比较敏感, 所以首先要对图像做中值滤波.

在这里插入图片描述

基于效率考虑, Opencv 中实现的霍夫变换圆检测是基于图像梯度实现, 分为两步:

检测变换, 发现可能的圆心基于第一步的基础上从候选圆心开始计算最佳半径大小

格式:

cv2.HoughCircles(image, method, dp, minDist, circles=None, param1=None, param2=None, minRadius=None, maxRadius=None)

参数:

image: 输入图像

method: 判别方法, 只有 HOUGH_GRADIENT (计算梯度) 一个方法

dp: 累计阈值

minDist: 间距, 小于间距判断成一个圆

param1: Canny 边缘检测的最大阈值

param2: 在检测阶段圆心累加器阈值, 是否为圆形

例一

import numpy as np
import cv2
from matplotlib import pyplot as plt

# 读取图片
image = cv2.imread("map.jpg")
image_copy = image.copy()

# 均值迁移滤波
filter = cv2.pyrMeanShiftFiltering(image, 10, 100)

# 转换成灰度图
filter_gray = cv2.cvtColor(filter, cv2.COLOR_BGR2GRAY)

# 霍夫曼圆圈检测
circles = cv2.HoughCircles(filter_gray, cv2.HOUGH_GRADIENT, 1, 20, param1=50, param2=100, minRadius=0, maxRadius=0)
circles = np.uint16(np.around(circles))

# 遍历
for circle in circles[0, :]:
    cv2.circle(image_copy, (circle[0], circle[1]), circle[2], (0, 0, 255), 2)
    cv2.circle(image_copy, (circle[0], circle[1]), 2, (255, 0, 0), 2)

# 图片展示
f, ax = plt.subplots(2, 2, figsize=(12, 12))

# 子图
ax[0, 0].imshow(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
ax[0, 1].imshow(cv2.cvtColor(filter, cv2.COLOR_BGR2RGB))
ax[1, 0].imshow(filter_gray, "gray")
ax[1, 1].imshow(cv2.cvtColor(image_copy, cv2.COLOR_BGR2RGB))

# 标题
ax[0, 0].set_title("original")
ax[0, 1].set_title("image filter")
ax[1, 0].set_title("image gray")
ax[1, 1].set_title("image circle")

plt.show()

# 保存结果
cv2.imwrite("map_result.jpg", image_copy)

输出结果:

在这里插入图片描述

在这里插入图片描述

例二

import numpy as np
import cv2
from matplotlib import pyplot as plt

# 读取图片
image = cv2.imread("coin.jpg")
image_copy = image.copy()

# 均值迁移滤波
filter = cv2.pyrMeanShiftFiltering(image, 10, 40)

# 转换成灰度图
filter_gray = cv2.cvtColor(filter, cv2.COLOR_BGR2GRAY)

# 霍夫曼圆圈检测
circles = cv2.HoughCircles(filter_gray, cv2.HOUGH_GRADIENT, 1, 20, param1=50, param2=100, minRadius=0, maxRadius=0)
circles = np.uint16(np.around(circles))

# 遍历
for circle in circles[0, :]:
    cv2.circle(image_copy, (circle[0], circle[1]), circle[2], (0, 0, 255), 2)
    cv2.circle(image_copy, (circle[0], circle[1]), 2, (255, 0, 0), 2)

# 图片展示
f, ax = plt.subplots(2, 2, figsize=(12, 12))

# 子图
ax[0, 0].imshow(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
ax[0, 1].imshow(cv2.cvtColor(filter, cv2.COLOR_BGR2RGB))
ax[1, 0].imshow(filter_gray, "gray")
ax[1, 1].imshow(cv2.cvtColor(image_copy, cv2.COLOR_BGR2RGB))

# 标题
ax[0, 0].set_title("original")
ax[0, 1].set_title("image filter")
ax[1, 0].set_title("image gray")
ax[1, 1].set_title("image circle")

plt.show()

# 保存结果
cv2.imwrite("coin_result.jpg", image_copy)

输出结果:

在这里插入图片描述

在这里插入图片描述

到此这篇关于OpenCV半小时掌握基本操作之圆圈检测的文章就介绍到这了,更多相关OpenCV圆圈检测内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

您可能感兴趣的文章:
阅读全文