python

关注公众号 jb51net

关闭
首页 > 脚本专栏 > python > Python接口自动化logging日志

Python接口自动化浅析logging日志原理及模块操作流程

作者:软件测试自动化测试

这篇文章主要为大家介绍了Python接口自动化系列文章浅析logging日志原理及模块操作流程,文中详细说明了为什么需要日志?日志是什么?以及日志用途等基本的原理

在上一篇Python接口自动化测试系列文章:Python接口自动化浅析pymysql数据库操作流程,主要介绍pymysql安装、操作流程、语法基础及封装操作数据库类。

以下主要介绍日志相关概念及logging日志模块的操作流程。

一、日志介绍

01 为什么需要日志?

代码需要经历开发、调试、审查、测试或者上线等不同阶段,在开发时想要打印的信息类型可能和上线后想看到的信息类型完全不同。也就是说,在“测试”时,可能只想看警告和错误信息,然而在“调试”时,可能还想看到跟调试相关的信息。 如果你想打印出使用的模块以及代码运行的时间,那么代码很容易变得混乱。使用logging日志模块,这些问题就能很容易地解决。

02 什么是日志?

日志就是用于记录系统运行时的信息,对一个事件的记录,也称为Log。

03 日志的用途是什么?

日志的基本用途如下:

04 日志的级别分为哪些?

常见日志等级,如下:

DEBUG:调试级别(Value=10),打印非常详细的日志信息,通常仅在Debug时使用,如算法中每个循环的中间状态;

INFO:信息级别(Value=20),打印一般的日志信息,突出强调程序的运行过程 ,主要用于处理请求或者状态变化等日常事务;

ERROR:错误级别(Value=40),打印错误异常信息,该级别的错误可能会导致系统的一些功能无法正常使用,如IO操作失败或者连接问题;

CRITICAL:严重错误(Value=50),一个严重的错误,导致系统可能无法继续运行,如内存耗尽、磁盘空间为空,一般很少使用;

05 日志功能的实现

几乎所有开发语言都会内置日志相关功能,或者会有比较优秀的第三方库来提供日志操作功能,比如:log4j,log4php等。它们功能强大、使用简单。

Python自身也提供了一个用于记录日志的标准库模块——logging。

二、Logging模块

01 logging模块介绍

logging模块是Python内置的标准模块,主要用于输出运行日志,可以设置输出日志的等级、日志保存路径、日志文件回滚等。

02 logging模块优势

相比print,具备如下优点:

03 logging日志框架的组成

Logger:日志,暴露函数给应用程序,基于日志记录器和过滤器级别决定哪些日志有效。

LogRecord :日志记录器,将日志传到相应的处理器处理。

Handler :处理器, 将(日志记录器产生的)日志记录发送至合适的目的地。

Filter :过滤器, 提供了更好的粒度控制,它可以决定输出哪些日志记录。

Formatter:格式化器, 指明了最终输出中日志记录的布局。

04 logging函数中的具体参数

filename:指定的文件名创建FiledHandler,这样日志会被存储在指定的文件中;

filemode:文件打开方式,在指定了filename时使用这个参数,默认值为“w”还可指定为“a”;

format:指定handler使用的日志显示格式;

datefmt:指定日期时间格式

level:设置rootlogger的日志级别;

stream:用指定的stream创建StreamHandler;

05 简单的日志小例子

我们试着分别输出一条不同日志级别的日志记录:

import logging
logging.debug("This is a debug log.")
logging.info("This is a info log.")
logging.warning("This is a warning log.")
logging.error("This is a error log.")
logging.critical("This is a critical log.")

输出结果为:

WARNING:root:This is a warning log.
ERROR:root:This is a error log.
CRITICAL:root:This is a critical log.

为什么debug、info级别日志没输出呢?logging模块提供的默认的日志级别是WARNING,所以只输出了WARNING及以上的日志级别。

输出内容格式说明:日志级别:日志器名称:日志内容, 如果未自定义日志器名称,默认是root。

以下是源码:

def getLogger(name=None):
    """
    Return a logger with the specified name, creating it if necessary.
    If no name is specified, return the root logger.
    """
    if name:
        return Logger.manager.getLogger(name)
    else:
        return root

06 自定义logger日志

设置日志收集器及级别:

# 定义一个日志收集器
logger = logging.getLogger('ITester')
# 设置收集器的级别,不设定的话,默认收集warning及以上级别的日志
logger.setLevel('DEBUG')

设置日志格式:

fmt =logging.Formatter('%(filename)s-%(lineno)d-%(asctime)s-%(levelname)s-%(message)s')

常见的日志输出格式:

设置日志处理器-输出到文件:

# 输出到文件
file_handler = logging.FileHandler('../log/mylog.txt')
# 设置日志处理器级别
file_handler.setLevel("DEBUG")
# 处理器按指定格式输出日志
file_handler.setFormatter(fmt)

在项目下新建一个文件夹log,在文件夹下新建文件mylog.txt用于存放日志。

设置日志处理器-输出到控制台:

# 输出到控制台
ch = logging.StreamHandler()
# 设置日志处理器级别
ch.setLevel("DEBUG")
# 处理器按指定格式输出日志
ch.setFormatter(fmt)

收集器和处理器对接,指定输出渠道:

# 日志输出到文件
logger.addHandler(file_handler)
# 日志输出到控制台
logger.addHandler(ch)

logger日志大致流程图,如下:

我们将以上独立的介绍糅合到一起,测试功能是否正常。在common目录下,新建文件logger_handler.py。

import logging
 
# 定义一个日志收集器
logger = logging.getLogger('ITester')
 
# 设置收集器的级别,不设定的话,默认收集warning及以上级别的日志
logger.setLevel('DEBUG')
 
# 设置日志格式
fmt =logging.Formatter('%(filename)s-%(lineno)d-%(asctime)s-%(levelname)s-%(message)s')
 
# 设置日志处理器-输出到文件
file_handler = logging.FileHandler('../log/mylog.txt')
 
# 设置日志处理器级别
file_handler.setLevel("DEBUG")
 
# 处理器按指定格式输出日志
file_handler.setFormatter(fmt)
 
# 输出到控制台
ch = logging.StreamHandler()
# 设置日志处理器级别
ch.setLevel("DEBUG")
# 处理器按指定格式输出日志
ch.setFormatter(fmt)
 
# 收集器和处理器对接,指定输出渠道
# 日志输出到文件
logger.addHandler(file_handler)
# 日志输出到控制台
logger.addHandler(ch)
 
if __name__ == '__main__':
    logger.debug('自定义的debug日志')
    logger.info('自定义的info日志')
    logger.warning('自定义的warning日志')
    logger.error('自定义的error日志')
    logger.critical('自定义的critical日志')

控制台输出效果:

文件输出效果:

以上就是Python接口自动化浅析logging日志原理及模块操作流程的详细内容,更多关于Python接口自动化logging日志的资料请关注脚本之家其它相关文章!

您可能感兴趣的文章:
阅读全文