java

关注公众号 jb51net

关闭
首页 > 软件编程 > java > JAVA堆排序

JAVA十大排序算法之堆排序详解

作者:阿粤Ayue

这篇文章主要介绍了java中的冒泡排序,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考

堆排序

这里的堆并不是JVM中堆栈的堆,而是一种特殊的二叉树,通常也叫作二叉堆。它具有以下特点:

知识补充

二叉树

树中节点的子节点不超过2的有序树

image-20210804135913978

满二叉树

二叉树中除了叶子节点,每个节点的子节点都为2,则此二叉树为满二叉树。

image-20210804140132004

完全二叉树

如果对满二叉树的结点进行编号,约定编号从根结点起,自上而下,自左而右。则深度为k的,有n个结点的二叉树,当且仅当其每一个结点都与深度为k的满二叉树中编号从1至n的结点一一对应时,称之为完全二叉树。

特点:叶子结点只能出现在最下层和次下层,且最下层的叶子结点集中在树的左部。需要注意的是,满二叉树肯定是完全二叉树,而完全二叉树不一定是满二叉树。

image-20210804144904950

二叉堆

二叉堆是一种特殊的堆,可以被看做一棵完全二叉树的数组对象,而根据其性质又可以分为下面两种:

如果把一个数组通过大根堆的方式来表示(数组元素的值是可变的),如下:

image-20210804180209118

由此可以推出:

如:对于 k = 1,其节点的对应数组为 5

左子节点的位置为 3,对应数组的值为 3

右子节点的位置为 4,对应数组的值为 2

如:数组长度为6,则 (6/2) - 1 = 2,即位置 2 为最后一个非叶子节点

给定一个随机数组[35,63,48,9,86,24,53,11],将该数组视为一个完全二叉树:

image-20210804190655494

从上图很明显的可以看出,这个二叉树不符合大根堆的定义,但是可以通过调整,使它变为最大堆。如果从最后一个非叶子节点开始,从下到上,从右往左调整,则:

image-20210804224254053

通过上面的调整,该二叉树为最大堆,这个时候开始排序,排序规则:

image-20210804234843626

代码实现

public class HeapSort {
    public static final int[] ARRAY = {35, 63, 48, 9, 86, 24, 53, 11};
    public static int[] sort(int[] array) {
        //数组的长度
        int length = array.length;
        if (length < 2) return array;
        //首先构建一个最大堆
        buildMaxHeap(array);
        //调整为最大堆之后,顶元素为最大元素并与微元素交换
        while (length > 0) {//当lenth <= 0时,说明已经到堆顶
            //交换
            swap(array, 0, length - 1);
            length--;//交换之后相当于把树中的最大值弹出去了,所以要--
            //交换之后从上往下调整使之成为最大堆
            adjustHeap(array, 0, length);
        }
        return array;
    }
    //对元素组构建为一个对应数组的最大堆
    private static void buildMaxHeap(int[] array) {
        //在之前的分析可知,最大堆的构建是从最后一个非叶子节点开始,从下往上,从右往左调整
        //最后一个非叶子节点的位置为:array.length/2 - 1
        for (int i = array.length / 2 - 1; i >= 0; i--) {
            //调整使之成为最大堆
            adjustHeap(array, i, array.length);
        }
    }
    /**
     * 调整
     * @param parent 最后一个非叶子节点
     * @param length 数组的长度
     */
    private static void adjustHeap(int[] array, int parent, int length) {
        //定义最大值的索引
        int maxIndex = parent;
        //parent为对应元素的位置(数组的索引)
        int left = 2 * parent + 1;//左子节点对应元素的位置
        int right = 2 * (parent + 1);//右子节点对应元素的位置
        //判断是否有子节点,再比较父节点和左右子节点的大小
        //因为parent最后一个非叶子节点,所以如果有左右子节点则节点的位置都小于数组的长度
        if (left < length && array[left] > array[maxIndex]) {//左子节点如果比父节点大
            maxIndex = left;
        }
        if (right < length && array[right] > array[maxIndex]) {//右子节点如果比父节点大
            maxIndex = right;
        }
        //maxIndex为父节点,若发生改变则说明不是最大节点,需要交换
        if (maxIndex != parent) {
            swap(array, maxIndex, parent);
            //交换之后递归再次调整比较
            adjustHeap(array, maxIndex, length);
        }
    }
    //交换
    private static void swap(int[] array, int i, int j) {
        int temp = array[i];
        array[i] = array[j];
        array[j] = temp;
    }
    public static void print(int[] array) {
        for (int i : array) {
            System.out.print(i + "  ");
        }
        System.out.println("");
    }
    public static void main(String[] args) {
        print(ARRAY);
        System.out.println("============================================");
        print(sort(ARRAY));
    }
}

时间复杂度

堆的时间复杂度是 O(nlogn)

参考:堆排序的时间复杂度分析

算法稳定性

堆的结构为,对于位置为 k 的节点,其子节点的位置分别为,左子节点 = 2k + 1,右子节点 = 2(k + 1),最大堆要求父节点大于等于其2个子节点,最小堆要求父节点小于等于其2个子节点。

在一个长为n的序列,堆排序的过程是从第n/2开始和其子节点共3个值选择最大(最大堆)或者最小(最大堆),这3个元素之间的选择当然不会破坏稳定性。但当为n/2-1,n/2-2,… 1 这些个父节点选择元素时,就会破坏稳定性。有可能第n/2个父节点交换把后面一个元素交换过去了,而第n/2-1个父节点把后面一个相同的元素没有交换,那么这2个相同的元素之间的稳定性就被破坏了。所以,堆排序不是稳定的排序算法。

思考

对于快速排序来说,其平均复杂度为O(nlogn),堆排序也是O(nlogn),怎么选择?如下题:

leetcode:数组中的第K个最大元素

此题的意思是对于一个无序数组,经过排序后的第 k 个最大的元素。

我们知道快速排序是需要对整个数组进行排序,这样才能取出第 k 个最大的元素。

如果使用堆排序,且是最大堆的方式,则第k次循环即可找出第 k 个最大的元素,并不需要吧整个数组排序。

所以对于怎么选择的问题,要看具体的场景,或者是两者都可。

总结

本篇文章就到这里了,希望能给你带来帮助,也希望您能够多多关注脚本之家的更多内容!

您可能感兴趣的文章:
阅读全文