详解nginx进程锁的实现
作者:等你归去来
一、 nginx进程锁的作用
nginx是多进程并发模型应用,直白点就是:有多个worker都在监听网络请求,谁接收某个请求,那么后续的事务就由它来完成。如果没有锁的存在,那么就是这种场景,当一个请求被系统接入后,所以可以监听该端口的进程,就会同时去处理该事务。当然了,系统会避免这种糟糕事情的发生,但也就出现了所谓的惊群。(不知道说得对不对,大概是那么个意思吧)
所以,为了避免出现同一时刻,有许多进程监听,就应该该多个worker间有序地监听socket. 为了让多个worker有序,所以就有了本文要讲的进程锁的出现了,只有抢到锁的进程才可以进行网络请求的接入操作。
即如下过程:
// worker 核心事务框架 // ngx_event.c void ngx_process_events_and_timers(ngx_cycle_t *cycle) { ngx_uint_t flags; ngx_msec_t timer, delta; if (ngx_timer_resolution) { timer = NGX_TIMER_INFINITE; flags = 0; } else { timer = ngx_event_find_timer(); flags = NGX_UPDATE_TIME; #if (NGX_WIN32) /* handle signals from master in case of network inactivity */ if (timer == NGX_TIMER_INFINITE || timer > 500) { timer = 500; } #endif } if (ngx_use_accept_mutex) { // 为了一定的公平性,避免反复争抢锁 if (ngx_accept_disabled > 0) { ngx_accept_disabled--; } else { // 只有抢到锁的进程,进行 socket 的 accept() 操作 // 其他worker则处理之前接入的请求,read/write操作 if (ngx_trylock_accept_mutex(cycle) == NGX_ERROR) { return; } if (ngx_accept_mutex_held) { flags |= NGX_POST_EVENTS; } else { if (timer == NGX_TIMER_INFINITE || timer > ngx_accept_mutex_delay) { timer = ngx_accept_mutex_delay; } } } } // 其他核心事务处理 if (!ngx_queue_empty(&ngx_posted_next_events)) { ngx_event_move_posted_next(cycle); timer = 0; } delta = ngx_current_msec; (void) ngx_process_events(cycle, timer, flags); delta = ngx_current_msec - delta; ngx_log_debug1(NGX_LOG_DEBUG_EVENT, cycle->log, 0, "timer delta: %M", delta); ngx_event_process_posted(cycle, &ngx_posted_accept_events); if (ngx_accept_mutex_held) { ngx_shmtx_unlock(&ngx_accept_mutex); } if (delta) { ngx_event_expire_timers(); } ngx_event_process_posted(cycle, &ngx_posted_events); } // 获取锁,并注册socket accept() 过程如下 ngx_int_t ngx_trylock_accept_mutex(ngx_cycle_t *cycle) { if (ngx_shmtx_trylock(&ngx_accept_mutex)) { ngx_log_debug0(NGX_LOG_DEBUG_EVENT, cycle->log, 0, "accept mutex locked"); if (ngx_accept_mutex_held && ngx_accept_events == 0) { return NGX_OK; } if (ngx_enable_accept_events(cycle) == NGX_ERROR) { // 解锁操作 ngx_shmtx_unlock(&ngx_accept_mutex); return NGX_ERROR; } ngx_accept_events = 0; ngx_accept_mutex_held = 1; return NGX_OK; } ngx_log_debug1(NGX_LOG_DEBUG_EVENT, cycle->log, 0, "accept mutex lock failed: %ui", ngx_accept_mutex_held); if (ngx_accept_mutex_held) { if (ngx_disable_accept_events(cycle, 0) == NGX_ERROR) { return NGX_ERROR; } ngx_accept_mutex_held = 0; } return NGX_OK; }
其他的不必多说,核心即抢到锁的worker,才可以进行accept操作。而没有抢到锁的worker, 则要主动释放之前的accept()权力。从而达到,同一时刻,只有一个worker在处理accept事件。
二、入门级锁使用
锁这种东西,一般都是编程语言自己定义好的接口,或者固定用法。
比如 java 中的 synchronized xxx, Lock 相关并发包锁如 CountDownLatch, CyclicBarrier, ReentrantLock, ReentrantReadWriteLock, Semaphore...
比如 python 中的 threading.Lock(), threading.RLock()...
比如 php 中的 flock()...
之所以说是入门级,是因为这都是些接口api, 你只要按照使用规范,调一下就可以了,无需更多知识。但要想用好各细节,则实际不简单。
三、nginx进程锁的实现
nginx因为是使用C语言编写的,所以肯定是更接近底层些的。能够通过它的实现,来看锁如何实现,应该能够让我们更能理解锁的深层次含义。
一般地,锁包含这么几个大方向:锁数据结构定义,上锁逻辑,解锁逻辑,以及一些通知机制,超时机制什么的。下面我们就其中几个方向,看下nginx 实现:
3.1、锁的数据结构
首先要定义出锁有些什么变量,然后实例化一个值,共享给多进程使用。
// event/ngx_event.c // 全局accept锁变量定义 ngx_shmtx_t ngx_accept_mutex; // 这个锁有一个 // atomic 使用 volatile 修饰实现 typedef volatile ngx_atomic_uint_t ngx_atomic_t; typedef struct { #if (NGX_HAVE_ATOMIC_OPS) // 有使用原子更新变量实现锁,其背后是共享内存区域 ngx_atomic_t *lock; #if (NGX_HAVE_POSIX_SEM) ngx_atomic_t *wait; ngx_uint_t semaphore; sem_t sem; #endif #else // 有使用fd实现锁,fd的背后是一个文件实例 ngx_fd_t fd; u_char *name; #endif ngx_uint_t spin; } ngx_shmtx_t; // 共享内存数据结构定义 typedef struct { u_char *addr; size_t size; ngx_str_t name; ngx_log_t *log; ngx_uint_t exists; /* unsigned exists:1; */ } ngx_shm_t;
3.2、基于fd的上锁/解锁实现
有了锁实例,就可以对其进行上锁解锁了。nginx有两种锁实现,主要是基于平台的差异性决定的:基于文件或者基于共享内在实现。基于fd即基于文件的实现,这个还是有点重的操作。如下:
// ngx_shmtx.c ngx_uint_t ngx_shmtx_trylock(ngx_shmtx_t *mtx) { ngx_err_t err; err = ngx_trylock_fd(mtx->fd); if (err == 0) { return 1; } if (err == NGX_EAGAIN) { return 0; } #if __osf__ /* Tru64 UNIX */ if (err == NGX_EACCES) { return 0; } #endif ngx_log_abort(err, ngx_trylock_fd_n " %s failed", mtx->name); return 0; } // core/ngx_shmtx.c // 1. 上锁过程 ngx_err_t ngx_trylock_fd(ngx_fd_t fd) { struct flock fl; ngx_memzero(&fl, sizeof(struct flock)); fl.l_type = F_WRLCK; fl.l_whence = SEEK_SET; if (fcntl(fd, F_SETLK, &fl) == -1) { return ngx_errno; } return 0; } // os/unix/ngx_file.c ngx_err_t ngx_lock_fd(ngx_fd_t fd) { struct flock fl; ngx_memzero(&fl, sizeof(struct flock)); fl.l_type = F_WRLCK; fl.l_whence = SEEK_SET; // 调用系统提供的上锁方法 if (fcntl(fd, F_SETLKW, &fl) == -1) { return ngx_errno; } return 0; } // 2. 解锁实现 // core/ngx_shmtx.c void ngx_shmtx_unlock(ngx_shmtx_t *mtx) { ngx_err_t err; err = ngx_unlock_fd(mtx->fd); if (err == 0) { return; } ngx_log_abort(err, ngx_unlock_fd_n " %s failed", mtx->name); } // os/unix/ngx_file.c ngx_err_t ngx_unlock_fd(ngx_fd_t fd) { struct flock fl; ngx_memzero(&fl, sizeof(struct flock)); fl.l_type = F_UNLCK; fl.l_whence = SEEK_SET; if (fcntl(fd, F_SETLK, &fl) == -1) { return ngx_errno; } return 0; }
重点就是 fcntl() 这个系统api的调用,无他。当然,站在一个旁观者角度来看,实际就是因为多进程对文件的操作是可见的,所以达到进程锁的目的。其中,tryLock 和 lock 存在一定的语义差异,即try时,会得到一些是否成功的标识,而直接进行lock时,则不能得到标识。一般会要求阻塞住请求
3.3、nginx锁实例的初始化
也许在有些地方,一个锁实例的初始化,就是一个变量的简单赋值而已。但在nginx有些不同。首先,需要保证各worker能看到相同的实例或者相当的实例。因为worker是从master处fork()出来的进程,所以只要在master中实例化好的锁,必然可以保证各worker能拿到一样的值。那么,到底是不是只是这样呢?
// 共享锁的初始化,在ngx master 中进行,后fork()到worker进程 // event/ngx_event.c static ngx_int_t ngx_event_module_init(ngx_cycle_t *cycle) { void ***cf; u_char *shared; size_t size, cl; // 定义一段共享内存 ngx_shm_t shm; ngx_time_t *tp; ngx_core_conf_t *ccf; ngx_event_conf_t *ecf; cf = ngx_get_conf(cycle->conf_ctx, ngx_events_module); ecf = (*cf)[ngx_event_core_module.ctx_index]; if (!ngx_test_config && ngx_process <= NGX_PROCESS_MASTER) { ngx_log_error(NGX_LOG_NOTICE, cycle->log, 0, "using the \"%s\" event method", ecf->name); } ccf = (ngx_core_conf_t *) ngx_get_conf(cycle->conf_ctx, ngx_core_module); ngx_timer_resolution = ccf->timer_resolution; #if !(NGX_WIN32) { ngx_int_t limit; struct rlimit rlmt; if (getrlimit(RLIMIT_NOFILE, &rlmt) == -1) { ngx_log_error(NGX_LOG_ALERT, cycle->log, ngx_errno, "getrlimit(RLIMIT_NOFILE) failed, ignored"); } else { if (ecf->connections > (ngx_uint_t) rlmt.rlim_cur && (ccf->rlimit_nofile == NGX_CONF_UNSET || ecf->connections > (ngx_uint_t) ccf->rlimit_nofile)) { limit = (ccf->rlimit_nofile == NGX_CONF_UNSET) ? (ngx_int_t) rlmt.rlim_cur : ccf->rlimit_nofile; ngx_log_error(NGX_LOG_WARN, cycle->log, 0, "%ui worker_connections exceed " "open file resource limit: %i", ecf->connections, limit); } } } #endif /* !(NGX_WIN32) */ if (ccf->master == 0) { return NGX_OK; } if (ngx_accept_mutex_ptr) { return NGX_OK; } /* cl should be equal to or greater than cache line size */ cl = 128; size = cl /* ngx_accept_mutex */ + cl /* ngx_connection_counter */ + cl; /* ngx_temp_number */ #if (NGX_STAT_STUB) size += cl /* ngx_stat_accepted */ + cl /* ngx_stat_handled */ + cl /* ngx_stat_requests */ + cl /* ngx_stat_active */ + cl /* ngx_stat_reading */ + cl /* ngx_stat_writing */ + cl; /* ngx_stat_waiting */ #endif shm.size = size; ngx_str_set(&shm.name, "nginx_shared_zone"); shm.log = cycle->log; // 分配共享内存空间, 使用 mmap 实现 if (ngx_shm_alloc(&shm) != NGX_OK) { return NGX_ERROR; } shared = shm.addr; ngx_accept_mutex_ptr = (ngx_atomic_t *) shared; ngx_accept_mutex.spin = (ngx_uint_t) -1; // 基于共享文件或者内存赋值进程锁,从而实现多进程控制 if (ngx_shmtx_create(&ngx_accept_mutex, (ngx_shmtx_sh_t *) shared, cycle->lock_file.data) != NGX_OK) { return NGX_ERROR; } ngx_connection_counter = (ngx_atomic_t *) (shared + 1 * cl); (void) ngx_atomic_cmp_set(ngx_connection_counter, 0, 1); ngx_log_debug2(NGX_LOG_DEBUG_EVENT, cycle->log, 0, "counter: %p, %uA", ngx_connection_counter, *ngx_connection_counter); ngx_temp_number = (ngx_atomic_t *) (shared + 2 * cl); tp = ngx_timeofday(); ngx_random_number = (tp->msec << 16) + ngx_pid; #if (NGX_STAT_STUB) ngx_stat_accepted = (ngx_atomic_t *) (shared + 3 * cl); ngx_stat_handled = (ngx_atomic_t *) (shared + 4 * cl); ngx_stat_requests = (ngx_atomic_t *) (shared + 5 * cl); ngx_stat_active = (ngx_atomic_t *) (shared + 6 * cl); ngx_stat_reading = (ngx_atomic_t *) (shared + 7 * cl); ngx_stat_writing = (ngx_atomic_t *) (shared + 8 * cl); ngx_stat_waiting = (ngx_atomic_t *) (shared + 9 * cl); #endif return NGX_OK; } // core/ngx_shmtx.c // 1. 基于文件进程共享空间, 使用 fd ngx_int_t ngx_shmtx_create(ngx_shmtx_t *mtx, ngx_shmtx_sh_t *addr, u_char *name) { // 由master进程创建,所以是进程安全的操作,各worker直接使用即可 if (mtx->name) { // 如果已经创建好了,则 fd 已被赋值,不能创建了,直接共享fd即可 // fd 的背后是一个文件实例 if (ngx_strcmp(name, mtx->name) == 0) { mtx->name = name; return NGX_OK; } ngx_shmtx_destroy(mtx); } // 使用文件创建的方式锁共享 mtx->fd = ngx_open_file(name, NGX_FILE_RDWR, NGX_FILE_CREATE_OR_OPEN, NGX_FILE_DEFAULT_ACCESS); if (mtx->fd == NGX_INVALID_FILE) { ngx_log_error(NGX_LOG_EMERG, ngx_cycle->log, ngx_errno, ngx_open_file_n " \"%s\" failed", name); return NGX_ERROR; } // 创建完成即可删除,后续只基于该fd实例做锁操作 if (ngx_delete_file(name) == NGX_FILE_ERROR) { ngx_log_error(NGX_LOG_ALERT, ngx_cycle->log, ngx_errno, ngx_delete_file_n " \"%s\" failed", name); } mtx->name = name; return NGX_OK; } // 2. 基于共享内存的共享锁的创建 // ngx_shmtx.c ngx_int_t ngx_shmtx_create(ngx_shmtx_t *mtx, ngx_shmtx_sh_t *addr, u_char *name) { mtx->lock = &addr->lock; if (mtx->spin == (ngx_uint_t) -1) { return NGX_OK; } mtx->spin = 2048; #if (NGX_HAVE_POSIX_SEM) mtx->wait = &addr->wait; if (sem_init(&mtx->sem, 1, 0) == -1) { ngx_log_error(NGX_LOG_ALERT, ngx_cycle->log, ngx_errno, "sem_init() failed"); } else { mtx->semaphore = 1; } #endif return NGX_OK; } // os/unix/ngx_shmem.c ngx_int_t ngx_shm_alloc(ngx_shm_t *shm) { shm->addr = (u_char *) mmap(NULL, shm->size, PROT_READ|PROT_WRITE, MAP_ANON|MAP_SHARED, -1, 0); if (shm->addr == MAP_FAILED) { ngx_log_error(NGX_LOG_ALERT, shm->log, ngx_errno, "mmap(MAP_ANON|MAP_SHARED, %uz) failed", shm->size); return NGX_ERROR; } return NGX_OK; }
基于fd的锁实现,本质是基于其背后的文件系统的实现,因为文件系统是进程可见的,所以对于相同fd控制,就是对共同的锁的控制了。
3.4、基于共享内存的上锁/解锁实现
所谓共享内存,实际就是一块公共的内存区域,它超出了进程的范围(受操作系统管理)。就是前面我们看到的mmap()的创建,就是一块共享内存。
// ngx_shmtx.c ngx_uint_t ngx_shmtx_trylock(ngx_shmtx_t *mtx) { // 直接对共享内存区域的值进行改变 // cas 改变成功即是上锁成功。 return (*mtx->lock == 0 && ngx_atomic_cmp_set(mtx->lock, 0, ngx_pid)); } // shm版本的解锁操作, cas 解析,带通知 void ngx_shmtx_unlock(ngx_shmtx_t *mtx) { if (mtx->spin != (ngx_uint_t) -1) { ngx_log_debug0(NGX_LOG_DEBUG_CORE, ngx_cycle->log, 0, "shmtx unlock"); } if (ngx_atomic_cmp_set(mtx->lock, ngx_pid, 0)) { ngx_shmtx_wakeup(mtx); } } // 通知等待进程 static void ngx_shmtx_wakeup(ngx_shmtx_t *mtx) { #if (NGX_HAVE_POSIX_SEM) ngx_atomic_uint_t wait; if (!mtx->semaphore) { return; } for ( ;; ) { wait = *mtx->wait; if ((ngx_atomic_int_t) wait <= 0) { return; } if (ngx_atomic_cmp_set(mtx->wait, wait, wait - 1)) { break; } } ngx_log_debug1(NGX_LOG_DEBUG_CORE, ngx_cycle->log, 0, "shmtx wake %uA", wait); if (sem_post(&mtx->sem) == -1) { ngx_log_error(NGX_LOG_ALERT, ngx_cycle->log, ngx_errno, "sem_post() failed while wake shmtx"); } #endif }
共享内存版本的锁的实现,基本就是cas的对内存变量的设置。只是这个面向的内存,是共享区域的内存。
四、 说到底锁的含义是什么
见过了许多的锁,依然过不好这一关。
锁到底是什么呢?事实上,锁就是一个标识位。当有人看到这个标识位后,就主动停止操作,或者进行等等,从而使其看起来起到了锁的作用。这个标识位,可以设置在某个对象中,也可以为设置在某个全局值中,还可以借助于各种存在介质,比如文件,比如redis,比如zk 。 这都没有差别。因为问题关键不在存放在哪里,而在于如何安全地设置这个标识位。
要实现锁,一般都需要要一个强有力的底层含义保证,比如cpu层面的cas操作,应用级别的队列串行原子操作。。。
至于什么,内存锁,文件锁,高级锁,都是有各自的应用场景。而要选好各种锁,则变成了评价高低地关键。此时此刻,你应该能判断出来的!
以上就是详解nginx进程锁的实现的详细内容,更多关于nginx 进程锁的资料请关注脚本之家其它相关文章!